
02.1.3 ARM CORTEX-M
INSTRUMENTATION TRACE

V 20.2

ARM Cortex-M Instrumentation Trace

Contents

01 Introduction 3

02 Overview – ITM Trace 4

03 winIDEA Configuration for the ITM Trace 5

04 Use case: printf() debugging 6

05 Use case: Function and Data Profiling 11

01

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 01 / Introduction 3

This tutorial focuses on the Software Tracing
on ARM Cortex-M architecture using the
Instrumentation Trace Macrocell (ITM).

After a short overview of the ITM Trace and winIDEA
configuration, following use cases are explained:

1. printf() output using GCC/newlib
• Create a library extension file
• Add dependencies and the library stub file
• Configure winIDEA Build Manager
• Configure the Terminal Window and display the

data

2. Function and Data Profiling (advanced use case)
• Add configurable macros, i.e. instrumented code
• Add the XML file to winIDEA
• Configure the Analyzer for Function Profiling
• Analyzer setup for Data Profiling via ITM Channel
• Configure the Analyzer for ITM Trace

Requirements:
• winIDEA
• GCC (arm-none-eabi) 4.7 or higher
• Hardware Debugger
• Target Board with ARM Cortex-M MCU featuring the

ITM and the SWO output

Introduction

1

2

02

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 02 / Overview – ITM Trace 4

The Instrumentation Trace Macrocell (ITM) is an
optional IP block which specific Cortex-M
implementation includes or not. Typically Cortex-
M3/M4/M7 devices include the ITM while Cortex-
M0/M+ don't.

The ITM is an application driven trace source that
supports printf() style debugging to trace
operating system and application events.

The ITM can emit trace messages generated by
different trace sources:
• Software Trace – Application software writes data

directly to the ITM stimulus registers, iSYSTEM
BlueBox captures these trace messages
and winIDEA interprets and visualize them
accordingly

• Hardware Trace – The Data Watchpoint Trace
(DWT) generates trace messages and ITM outputs
them

• Time Stamping – Time stamps are generated
relative to the trace messages

• Global System Timestamping – Time stamps can
optionally be generated using a system wide 48-bit
count value

Trace Port Interface Unit (TPIU) outputs packets to an
external debugger (BlueBox) either through the Single
Wire Output (SWO) or the 4-bit Parallel trace port.

Refer to Tutorial Introduction to ARM Cortex-M Trace
for more information about Cortex-M CoreSight
Architecture.

Overview – ITM Trace

winIDEA ITM
configuration dialog

ETM

ITM

ARM
Cortex-M

core
DWT

TPIU –
Trace Port
Interface

Unit

Instruction Trace

Data Trace

Trigger

SWO

Parallel

CoreSight
Architecture
overview

https://www.isystem.com/files/Tutorials/Trace/02.1.1-ARM-Cortex-M-Introduction.pdf

03

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 03 / winIDEA Configuration for ITM Trace 5

Specific CPU Options need to be configured
prior to using the ITM Trace.

Open Hardware menu / CPU Options / SoC
tab and select:

1. SWD Debug Protocol

2. Parallel or SWO Trace Capture Method

In case of the printf () output usage it's

recommended to select the SWO.

More information in Tutorial ARM Cortex-M
winIDEA Configuration.

winIDEA Configuration for the ITM Trace

1

2

https://www.isystem.com/files/Tutorials/Trace/02.1.2-ARMCortex-M-winIDEA-Configuration.pdf

04

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 4 / Use case: printf() debugging 6

By using the Cortex-M ITM, the application
can “print” optional user data to winIDEA
Terminal window. A user instruments his
code with “trace points”, which provide
insight into the embedded target behavior at
full MCU speed and without stopping the
execution.

“Trace points” are so called printf()
statements, each writing a user defined data
to the ITM stimulus register(s). Each write to
these registers generates a trace message,
which is then sent out to the SWO (Single
Wire Output) trace port, where iSYSTEM
BlueBox captures and decodes it, and then
displays a human readable string in the
Terminal window.

Writing one data within the application “trace
point” requires single write cycle to the
internal 32-bit register which yields negligible
performance penalty.

Use case: printf() debugging 1/4

Code ITM_SendChar()
ITM

Module

Normal
trace path

Redirected
trace path

winIDEA Terminal Window

winIDEA Analyzer Window

04

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 4 / Use case: printf() debugging 7

Step 1: Create the library extension (stub) file

Note: When adding printf() argument to the code,
you must include “\n”.

• Create a file, e.g. syscalls.c
• Add the code which defines the CMSIS function

prototypes, e.g core_cm4.h (or core_cm3.h,
core_cm7)

• Add the code ITM_SendChar which sends a single
character to the ITM Module

Step 2: Add files to the project – The library stub file
e.g. syscall.c needs to be added to winIDEA project:
• Right click in the Project window
• Select Add Files in the context menu
• Select the files from File explorer and click OK

Library stub file overview
Input function e.g. printf() calls a low level function
to perform the actual output. Low level output depends
largely on the compiler/library being used.

GCC (arm-none-eabi) compiler uses a version of the
Redhat newlib library. Newlib calls the following low
level stubs:
• _write() – implements character O (putchar())

Use case: printf() debugging 2/4

1 2#include " core_cm4.h "

int _write (int fd, char *ptr,

int len)

{

unsigned int i;

for (i = 0; i < len; i++) {

ITM_SendChar(*ptr++);

}

return len;

}

The following examples apply to arm-none-
eabi/Newlib.

04

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 4 / Use case: printf() debugging 8

Step 3: Configure winIDEA Build Manager and
rebuild the project

1. Select Project menu / Settings / Linker tab

2. Add macros to the Options section:
• - lc - lnosys

• -- specs= nano.specs

• - Xlinker –- gc - sections

3. Rebuild the Project

Explanation:
The newlib nano option (specs) offers are
space optimized MCU friendly implementation.
The nosys library implements all stub functions
not implemented in e.g. syscalls.c and
therefore is added to the link list. The –gc-
sections option turns on the „garbage collection
(see the GNU linker reference manual for more
details)

Use case: printf() debugging 3/4

1 2

3

04

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 4 / Use case: printf() debugging 9

Step 4: Configure the Terminal Window and
display the data

1. Select View menu / Workspace / Terminal
Window

2. Click Options button from the Terminal
Window toolbar

3. Select Debugger from the drop-down menu
and click Configure

4. Select Trace Channel as Communication
Type and click Advanced

5. Make sure that either:
• All is selected in the Enable drop-down menu

or
• Selected is selected in the Enable drop-down

menu and ITM Stimuli is enabled, e.g. ITM
(0) if printf() writes to the ITM0 stimulus
register.

6. Perform Debug Download

7. Click Connect button in the Terminal Window

8. Run the program (F5) and observe the
application printing the string which is written
to the ITM via printf() "trace points".

Use case: printf() debugging 4/4

1

2

3

4

5

6

7

8

1

05

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 5 / Use case: Function and Data Profiling 10

Function profiling measures runtime of the function and
optionally subfunctions. The goal is to instrument entry
and exit of the function which yields generating trace
messages at the entry and exit of the function. In data
profiling the value of the variable is traced respectively
profiled.

Step 1: Add configurable macros, i.e. instrumented
code

1. Configure channels and code containing function and
ID
• ITM Channel 2 – Configured for Function Profiling /

Runnable Trace
• ITM Channel 3 – Configured for Data Profiling / User

Data Trace

Note: Any out of 32 available ITM channel/registers can
be used.

2. Tracing of AUTOSAR Runnables via the ITM is
accomplished by a Runtime Environment (RTE)
Generator feature which is called Virtual Function Bus
Tracing (VFB). If VFB trace for specific Runnables is
enabled in the RTE, it automatically adds a Start and a
Return trace hook function call before and after the
actual Runnable call within the function. The actual
trace hook function implementation is then up to the
user.

3. Add an ITM trace function entry and exit macro at the
entry point and before the exit point of the function.

Use case: Function and Data Profiling 1/5
2

3

Example: Generated RTE.c via RTE Generator

Example: RTE VFB Trace Hooks

Handwritten C code

Local Data
Profiling

Function
Profiling

05

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 5 / Use case: Function and Data Profiling 11

Step 2: Add XML file to winIDEA

1. Open Debug menu / Operating System
• Enable OSEK AUTOSAR
• Click Configure to open Edit options dialog
• Select a file format type from the drop-

down menu RTOS description file type
• Add the file to RTOS description file location

2. An essential part of the Profiler is the
iSYSTEM XML file which informs about the
entry and exit of the function and gives the
software information about function ID
mapping used by the instrumentation code.

In this case the XML file informs the Profiler
that function entry/exit signaling is performed
via ITM channel 0x0002.

The RUN_TYPE enumeration type maps the
Function IDs to the to Function/Runnable
names by using the instrumentation code.

Use case: Function and Data Profiling 2/5

It is assumed that AUTOSAR OS is configured. In
the opposite case refer to Online Help.

1

2

ITM Channel 2

https://www.isystem.com/downloads/winIDEA/help/index.html?autosar.html

05

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 5 / Use case: Function and Data Profiling 12

Step 3: Configure Analyzer for ITM Trace

1. Select Analyzer configuration dialog /
Hardware tab

2. Make sure Profiler is checked

3. Enable Manual Trigger/Recorder
Configuration and click Configure

4. Select ITM tab and check the box Enabled
and make sure All is selected from the drop-
down menu

Note: winIDEA version 9.17.156 ITM configuration
section is located in the DWT CORE0 tab.

3

2

Use case: Function and Data Profiling 3/5

4

05

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 5 / Use case: Function and Data Profiling 13

Step 4: Configure Analyzer for Function
Profiling

1. Open View menu / Analyzer
• Click Analyzer Configuration button /

Create New Configuration
• Give the Configuration a meaningful name

and confirm

2. Make sure only OS objects and Data (which
will be configured in the next step) is enabled
in the Analyzer Configuration dialog / Profiler
tab
• Click OS Setup

3. Select Runnables in the RTOS Profiler
Options dialog

Use case: Function and Data Profiling 4/5
1

3

2

05

ARM Cortex-M Instrumentation Trace / Unit 02.1.3 / Chapter 5 / Use case: Function and Data Profiling 14

Step 5: Analyzer Setup for Data Profiling via ITM
Channel 3

1. Make sure Data is enabled in Analyzer
Configuration dialog / Profiler tab (should be
enabled in the previous step)

2. Click New / Trace in the Data Areas section

3. Add a description, e.g. SensorData

4. Select ITM from the drop-down menu and type
in the number of the ITM Channel

5. Visualize the data in Profiler Timeline

Follow Tutorial Analyzer – Profiler on how to profile
code, data and OS objects with winIDEA Analyzer and
visualize the results in the Profiler window.

1

2

3

4

Use case: Function and Data Profiling 5/5

5

https://www.isystem.com/files/Tutorials/Trace/04-Analyzer-Profiler.pdf

Further Reading

For more information refer to our online resources:

• Hardware Solutions:

• On-Chip Analyzer BlueBox iC5700

• Active Probes

• winIDEA Online Help:

• ARM Cortex Analyzer

• Terminal Window

• Knowledge Base

https://www.isystem.com/products/hardware/on-chip-analyzers/ic5700.html
https://www.isystem.com/products/hardware/iom-accessories-82/iom6-family/iom6-activeprobe.html
https://www.isystem.com/downloads/winIDEA/help/index.html?cortex-analyzer.html
https://www.isystem.com/downloads/winIDEA/help/terminalwindow.html
https://support.isystem.com/kb

