
01

testIDEA

t e s t I D E A T R A I N I N G
Objectives
At the end of this training, you will be able to

• Create unit tests that execute on-target using testIDEA

• Create tests for C and C++ applications

• Export code coverage and test reports for unit tests

• Export tests as Python scripts for test automation using Continuous Integration (CI) tools
such as Jenkins



01

testIDEA

Contents 

t e s t I D E A T R A I N I N G
Unit 01 Testing - Basic knowledge (this unit)
Unit 02 Source Level Testing and Object Level Testing
Unit 03 testIDEA - First steps and test cases
Unit 04 More complex test cases
Unit 05 Import test cases
Unit 06 Coverage measurement and test reports
Unit 07 Testing object oriented code
Unit 08 Testing state dependent code
Unit 09 Stubbing hardware during testing
Unit 10 Export Python scripts for test automation
Unit 11 Testing registers and peripherals



testIDEA »

In this training we start with a quick 
overview of unit testing and how 
iSYSTEM’s tools are used to 
implement it. As you get further, we 
get deeper into more complex testing 
topics such as testing of C++ code, 
importing test vectors and 
automated testing. The diagram here 
shows the journey you are about to 
take...

testIDEA TRAINING - OVERVIEW

301 » Training overview



01

testIDEA

B A S I C  K N O W L E D G E
Testing -

Objectives
At the end of this section, you will be able to

• Explain what unit testing is and how it differs from integration and system testing

• List two testing techniques for the generation of unit tests

• Explain how coding standards, design rules, documentation and abstraction facilitate testing



01

testIDEA

Contents 

B A S I C  K N O W L E D G E
1 Software Testing - Introduction 1-11

2 Testing Software with testIDEA 12-15

3 Making testing easier 16-21

4 Standards - How much testing is required? 22

5 Example unit test development process 23

6 Methods of testing 24

7 Summary 29-30

Coding standards 17
Design rules 18
Abstraction 19-20
Documentation 21

White Box - Grey Box - Black Box 25
Equivalence partitioning 26-27
Boundary value analysis 28



testIDEA »

Increasingly, in all sectors of 
embedded development, we are 
becoming more reliant on software. 
Software-based systems, together 
with today’s clever microcontroller 
peripherals, enable the 
implementation of applications that 
were previously considered too 
costly, complex or risky. However, the 
software associated with always-
connected or uninterrupted usage, 
coupled with safety and quality 
demands, requires that our software 
is sufficiently tested if we want to 
avoid product recalls or, in the worst 
cases, life-threating injuries.

The shortened definition opposite 
(source: Wikipedia) sums up the core 
goals of software testing well.

1 SOFTWARE TESTING - WHAT IS IT?

601 Chapter 1 » Testing

Software testing is an investigation conducted to provide 
stakeholders with information about the quality of the software 
product. Software testing can also provide an objective, 
independent view of the software to allow the business to 
appreciate and understand the risks of software implementation. 

Software testing involves the execution of a software component to 
evaluate the extent to which the component or system under test:

• meets the requirements that guided its design and development,

• responds correctly to all kinds of inputs,

• performs its functions within an acceptable time,

• is sufficiently usable, and

• achieves the general result its stakeholders desire.

https://en.wikipedia.org/wiki/Software_testing


testIDEA »

The testing and review of software 
are different from the analysis and 
development of it. 

During software development we are 
working positively to solve the 
challenges posed during the 
development process to develop our 
product according to the user 
specification. 

However, during testing or the review 
of our software, we are searching for 
the defects or failures in the 
software. 

Thus, test development requires a 
different mindset from that required 
for the software’s creation. 

(ISTQB Exam Certification: 
http://istqbexamcertification.com/wh
at-is-the-psychology-of-testing/)

1 SOFTWARE TESTING - PRINCIPLES

701 Chapter 1 » Testing

1. Testing shows presence of defects
Testing can show the defects are present, but cannot prove 
that there are no defects. 

2. Exhaustive testing is impossible
Testing everything including all combinations of inputs and preconditions is 
not possible. So, instead of undertaking exhaustive testing, we can use risks 
and priorities to focus our testing effort. 

3. Early testing
In the software development life cycle, testing activities should start as early 
as possible and should be focused on defined objectives.

4. Defect clustering
A small number of modules contain most of the defects discovered during 
pre-release testing, or will show the most operational failures.

ISTQB Exam Certification: 
http://istqbexamcertification.com/what-are-the-principles-of-testing/

http://istqbexamcertification.com/what-is-the-psychology-of-testing/
http://istqbexamcertification.com/what-are-the-principles-of-testing/


testIDEA » 801 Chapter 1 » Testing

Safety and
Security
Demands

Clear 
Require-
ments

Clean 
Development 
Process

Coding and
Design Rules

Standards

Toolchain
Selection

Test 
Environment

Testing

1 SOFTWARE TESTING - INFLUENCING FACTORS

There are many factors that influence 
the software developed and how 
best to approach testing it. The 
diagram opposite highlights what 
could be considered to be the key 
factors that should always be 
included or considered to ensure 
that testing can be undertaken as 
easily and smoothly as possible. 

Some elements will be demanded by 
the application itself (e.g. Safety 
Standards) whilst others simply make 
life easier when developing the 
testing strategy. 

The following slides will look at these 
factors one-by-one and consider how 
they impact and simplify software 
testing. 



testIDEA » 9

Requirements help a development 
team to clarify what goal should be 
achieved with their software 
development and what will 
constitute “successful completion”. 
The requirements also form a critical 
element of the testing process as, 
without them, it is impossible to 
know if the software developed fulfils 
the demands made of it.

Regardless of the size of your 
organization, the importance of 
safety for your application, or even 
the size of the project, at a minimum 
a simple text document should 
declare what you intend to achieve.

It can be said that it is more 
important to document the 
requirements than concern yourself 
with which tool they are documented 
with.

01 Chapter 1 » Testing

1 SOFTWARE TESTING - REQUIREMENTS

There are many options for creating and managing requirements, 
including:

• Simple Text File

• Word or Excel Document

• Polarion (link)

• IBM Rational DOORS (link)

• Enterprise Architect (link)

https://polarion.plm.automation.siemens.com/
http://www-03.ibm.com/software/products/en/ratidoor
http://www.sparxsystems.com/platforms/requirements_management.html


testIDEA »

test cases

Testing fits in to the V-Model as 
shown opposite.

A unit test is the smallest testable 
part of an application, such as a 
function, a class’s method. Unit 
testing is a method by which individual 
units of source code are tested to 
determine if they are fit for use.
ISTQB Exam Certification: 
http://istqbexamcertification.com/wh
at-is-unit-testing/

Integration testing tests the interfaces 
between components to prove the 
correct functionality of interaction 
between those components, e.g. 
between a file system and the 
hardware abstraction layers.
ISTQB Exam Certification: 
http://istqbexamcertification.com/wh
at-is-integration-testing/

1 SOFTWARE TESTING - POSITION IN THE DEVELOPMENT PROCESS

01 Chapter 1 » Testing

system
operation

problem
definition

requirement
definition

acceptance

system draft system test

components
draft

integration 
test

unit testmodule draft

system conception

scenarios

test cases

test cases

product flow validation integrationverificationconstruction

10

http://istqbexamcertification.com/what-is-unit-testing/
http://istqbexamcertification.com/what-is-integration-testing/


testIDEA »

test cases

testIDEA is designed for the 
development and execution of unit 
tests. However, in the environment of 
embedded development, and the 
close overlap of these terms within 
the context of embedded 
development, testIDEA can often be 
used to implement some integration 
testing too. 

For integration and system testing, 
iSYSTEM’s other software tools are 
better placed. For example, we would 
recommend using the 
isystem.connect SDK together with 
our BlueBox™ hardware, potentially 
in conjunction with other 3rd party 
tools.

1 SOFTWARE TESTING - POSITION IN THE DEVELOPMENT PROCESS

01 Chapter 1 » Testing

system
operation

problem
definition

requirement
definition

acceptance

system draft system test

components
draft

integration 
test

unit testmodule draft

system conception

scenarios

test cases

test cases

product flow validation integrationverificationconstruction

11



testIDEA »

This training focuses on the use of 
the software tool testIDEA from 
iSYSTEM for the implementation and 
execution of tests on microcontroller-
based embedded systems. 

testIDEA leverages the 
microcontroller’s debug interface, 
access to which is made available 
through winIDEA and the BlueBox™, 
to test software directly on the target 
MCU. 

Despite enormous advances in 
technology, software testing still 
requires a significant amount of 
human endeavor from technically 
qualified personnel. This training will 
provide some background on how to 
approach the development of tests 
before showing how they can be 
implemented using testIDEA.

2 TESTING SOFTWARE WITH testIDEA

1201 Chapter 2 » Testing software with testIDEA

Test specification

SCRIPT
Tester.loadTestSpec(testSpecFile)

isystem.connect
isystem.test

winIDEA

BlueBox™

MCU

testIDEA



testIDEA »

Prerequisites

The following software needs to be 
installed on your computer to be able 
to run and use iSYSTEM testIDEA:

• Java Runtime Environment (JRE) 
version 1.7 (automatically installed 
together with testIDEA)

• winIDEA version 9.12 or later. 
iSYSTEM’s testIDEA is included 
when you install winIDEA.
testIDEA can be used separately 
from winIDEA but there are quite 
some limitations without the link 
to the information winIDEA 
provides, e.g. the BlueBox™ and 
target in use and the symbols of 
your binary file’s object code.

2 TESTING SOFTWARE WITH testIDEA

1301 Chapter 2 » Testing software with testIDEA

If you have installed a
full winIDEA setup, 
testIDEA is already available 
on your system.



testIDEA »

Download and install

If you need to update or install 
testIDEA separately from winIDEA, 
contact iSYSTEM support for the 
installation file. Then unzip the file to 
your hard disk. There is a 
iSystem_testIDEA.exe executable in 
the unzipped folder. Make a desktop 
shortcut for your convenience.

2 TESTING SOFTWARE WITH testIDEA

1401 Chapter 2 » Testing software with testIDEA

If you have installed a
full winIDEA setup, 
testIDEA is already available 
on your system.



testIDEA »

2 TESTING SOFTWARE WITH testIDEA

1501 Chapter 2 » Testing software with testIDEA

Professional and standard features of 
testIDEA

testIDEA has an advanced set of 
features that are available only in 
professional mode. This mode is 
activated if there is a testIDEA PRO 
license present in your BlueBox™ On-
Chip Analyzer. 

To activate these features, the 
BlueBox ™ must be connected to 
your computer and turned on. Then 
you should connect to winIDEA with 
command iTools → Connect to 
winIDEA. If you connect or turn on 
the emulator later, simply execute 
the command again and testIDEA will 
check the license.

Professional features:

• Report generation
• Wizard for test case generation
• Test templates
• I/O module & HIL support
• Code coverage
• Profiler/performance analysis
• Trace
• Python script generation
• Script execution before/after test

• Excel/CSV import/export
• Filtering of tests for execution
• Dry run
• Measurement of stack usage
• Function execution sequence verification
• Test points
• Renaming of functions and variables
• Native (real-time) stubs

PRO
Activities and functions that require a testIDEA PRO license will be 
marked with the logo shown on the right in these training slides.
Feel Fee free to contact iSYSTEM if you would like an evaluation license.

http://isy.si/li-000013


testIDEA »

Generally speaking, there are a few 
software development approaches 
that ensure that testing can be 
performed efficiently and 
successfully. 

As previously stated, clear 
requirements and specifications are 
the starting point. This will help us to 
develop and test within a well-
structured working process.

Furthermore, the use of coding 
standards, design rules and principles 
of abstraction are very important and 
help to ease testing later on.

Finally, documentation and 
commenting of code helps to ensure 
that critical information concerning 
coding decisions made doesn‘t get 
lost. 

3 MAKING TESTING EASIER

1601 Chapter 3 » Making testing easier

Some items that simplify testing process:

• Clear project requirements and specification
• Coding standards
• Development design rules
• Abstraction of “functionality”, “algorithms” and “services” 

from hardware
• Documentation



testIDEA »

Coding standards:

• defines how the software 
instructions are placed in the text 
file

Having a coding standard in place 
helps to ensure that the look and feel 
of code remains the same, regardless 
of who wrote the code. This makes it 
much easier to spot possible errors, 
since things like brackets are always 
in the same place, comments follow 
the same construction, and so on.

This also helps when developing unit 
tests, as the location of prototypes, 
and the way they are declared and 
documented, is easier to ascertain.

3 MAKING TESTING EASIER - CODING STANDARDS

1701 Chapter 3 » Making testing easier

• Set of conventions
• Defines programming style
• Not limited to C/C++
• Simplifies code maintenance
• Invaluable in team environment
• Still relevant for individual development

Basic principles – taken from Micrium AN-2000

• Keep to the spirit of the standard
• Comply with ANSI C standards
• Keep the code simple
• Be explicit
• Be consistent
• Avoid complicated statements

https://www.micrium.com/download/micrium-coding-standards/


testIDEA »

Design rules:

• ensures software results in 
portable, re-entrant, safe and 
efficient code

It is slightly easier to explain what 
design rules are by showing how they 
differ from coding standards:

• If coding standards determine how 
the code is written and formatted 
on the page, it is design rules that 
define how the resulting code 
should function and interact with 
other software modules, RTOSs 
and functions.

This leads on to our next topic –
Code Abstraction.

3 MAKING TESTING EASIER - DESIGN RULES

1801 Chapter 3 » Making testing easier

Design rules help to ensure code reusability, defining:
• Code re-entrancy
• How to use and support shared resources

− Memory regions
− Stack/Heap
− Peripherals

• Keeping interrupt latency to a minimum
• Use of “MCU specific” features, such as:

− Instructions for fast memory accesses
− Cache and DMA usage
− DSP or processor dependent instructions

Texas Instruments provides a good example of design 
rules for developers wishing to create re-usable 
software modules for their DSP ecosystem (link)

http://www.ti.com/lit/pdf/spru352


testIDEA »

Abstracting application code from 
software algorithms, services and 
hardware is also an important aspect 
of software development.

It enables reusability by making MCU 
specific capabilities and features 
irrelevant. In the example opposite, 
the EEPROM Driver and Temperature 
Sensor Driver both rely upon an “SPI 
Service” layer to use a single SPI 
interface to communicate with two 
different SPI-based off-chip 
peripherals.

If we were to change the MCU, all 
that should be required is the 
creation of a new “HAL” layer to 
make use the new MCU’s SPI 
interface. The remaining software 
modules should remain fully usable.

3 MAKING TESTING EASIER - ABSTRACTION

1901 Chapter 3 » Making testing easier

HAL

SPI “Service”

Temp.
Sensor
Driver

Algorithm

SPI Temp. Sensor

SPI EEPROM
SPI Bus

Application Layer

EEPROM
Driver



testIDEA »

Further benefits arise later during 
testing. Each of the software 
modules included in the application 
can be tested in isolation of one-
another.

Here the “Algorithm” module is being 
tested in isolation of the remainder 
of the application.

Assuming the “Algorithm” module 
passes all our tests but our full 
application delivers incorrect results, 
the error is very unlikely to be related 
to this software module. It is more 
likely that the “Algorithm” module is 
being fed with incorrect data from 
elsewhere in the application.

3 MAKING TESTING EASIER - ABSTRACTION

2001 Chapter 3 » Making testing easier

HAL

SPI “Service”

Temp.
Sensor
Driver

Algorithm

SPI Temp. Sensor

SPI EEPROM
SPI Bus

Application Layer

EEPROM
Driver

Algorithm
Tests



testIDEA »

Documentation is also an area where 
many of us can (and should) improve. 
There is no hard-and-fast rule 
regarding the expected 
code/comment ratio. However, the 
table on the right provides some 
advice on best practice in the 
industry.

Note that many open-source 
software projects, that rely upon 
resources across the world to work 
together and communicate well, 
deliver projects that are in the 
“good” to “excellent” range.

The opinion in the table opposite 
comes from this source.

3 MAKING TESTING EASIER - DOCUMENTATION

2101 Chapter 3 » Making testing easier

Code/Comment ratio 

< 5 % Horribly commented 

> 5 % Poorly commented 

> 10 % Average

> 15 % good

> 25 % excellent

https://everything2.com/title/comment-to-code+ratio


testIDEA »

Some industry sectors have stringent 
requirements for safety and have 
clear standards in place that must be 
fulfilled. The automotive industry 
uses ISO 26262 and acceptable 
approaches to proving software 
quality are made very clear, defined 
according to the stage in the V-Model 
that is currently being undertaken.

Such documents provide guidance on 
how to assess risk, approaches for 
requirements analysis and the 
documentation that needs to be 
delivered to prove testing was 
undertaken.

These standards are also helpful to 
answer questions of “how much 
testing is enough” and “which 
approach to take” for those simply 
trying to improve their software 
quality.

4 STANDARDS - HOW MUCH TESTING IS DEMANDED?

2201 Chapter 4 » Standards - How much testing is required?

ISO 26262 Structural Coverage Metrics at Software Unit Level(*)

Chapter 9 of IS0 26262 offers suitable methods for software unit testing, method 
for deriving unit testing test case and, as shown here, coverage requirements for 
those tests that depend on the Automotive Safety Integrity Level that came out of 
the risk assessment. 
A single tick is a “recommended” method, a double tick is “highly recommended”.

Method
ASIL

A B C D

Statement Coverage ✓✓ ✓✓ ✓ ✓

Branch Coverage ✓ ✓✓ ✓✓ ✓✓

MC/DC (Modified 
Condition/Decision Coverage)

✓ ✓ ✓ ✓✓

(*) Taken from ISO 26262-6, Table 12



testIDEA »

Generate Excel 
template from 
testIDEA

Generate or insert 
test cases in Excel

Import test cases 
into testIDEA

Run test cases on 
target

Create test report Evaluate test results

Optional: Export 
test script to 
Continuous 
Integration system

5 EXAMPLE UNIT TEST DEVELOPMENT PROCESS

2301 Chapter 5 » A typical unit-testing-process

Opposite is just one simple example 
of how a testing process for the unit 
testing of a software module can be 
implemented.

This process provides a method that 
can handle a great number of test 
cases. It refers to an external tool (in 
this case, Microsoft Excel) and uses 
features of the chosen tool 
(automated test vector input and 
result calculation). 

It is also possible (as will be shown in 
Unit 03) to create a number of tests 
solely within testIDEA.



testIDEA »

6 METHODS OF TESTING

2401 Chapter 6 » Methods for testing

Static
Testing

Dynamic 
Testing

Static analysis
by humans

Static analysis
by tools

White Box 
Testing

Grey Box 
Testing

Black Box 
Testing

Review 
Walkthrough …

Compiler

Coding standards
analysis

Metrics

Control flow 
structure analysis

Data flow 
structure analysis

…

Code coverage

Branch coverage

Decision coverage

Tracing

…

Combination of 
White Box and 

Black box 
methods

…

Equivalence 
partitioning

Boundary value 
analysis

State-driven tests

Use case-driven 
tests

…

Software testing, and the tools that 
are on offer, can be broadly 
categorized for use in Static or 
Dynamic software testing.

Static Testing approaches analyze the 
source code without consideration 
for other factors, such as the 
microcontroller being used, 
interaction of hardware with one 
another, or the tool chain being used 
for compilation.

Since embedded systems depend on 
the interaction of hardware with 
software, Dynamic Testing 
approaches are typically of more use. 
These range from simply testing the 
functionality of the completed 
software-based product (Black Box) 
through to testing the source code 
on the microcontroller, often 
together with other hardware (White 
Box).



testIDEA »

The differences between these 
testing methods depend largely on 
how much access the tester has to 
the source or binary code used in the 
application. 

If a tester has full access to the 
contents of the code and the 
architecture of the system, they will 
likely undertake white box testing. 

If there is limited or no access to the 
source code, they will have consider 
testing the application as a black box.

These differences also require a 
different mindset to approach the 
testing of the application.

Techniques for the generation of 
“just enough” tests are covered in 
the next slides.

6 METHODS OF TESTING - WHITE BOX - GREY BOX - BLACK BOX

2501 Chapter 6 » Methods of testing

White Box =  Structure-based testing 
→ Tester requires knowledge of how the software is implemented, 

how it works along with access to the source code

White Box

Grey Box

Black Box 
Testing

Black Box = Specification-based testing
→ Tester likely has no knowledge of how the system or its 

components are structured within the product 

Grey Box = Structure- and Specification-based testing
→ Tester has as little knowledge of the code implementation as

possible, and as much insight as required



testIDEA »

Equivalence partitioning (EP) is a 
specification-based or black-box testing 
technique.

It can be applied at any level of testing 
and is often a good technique to use 
first. 

The idea behind this technique is to 
divide (i.e. to partition) a set of test 
conditions into groups or sets that can 
be considered the same (i.e. the system 
should handle them equivalently), 
hence “equivalence partitioning”. 

Equivalence partitions are also known as 
equivalence classes - the two terms 
mean exactly the same thing.

ISTQB Exam Certification
http://istqbexamcertification.com/wh
at-is-equivalence-partitioning-in-
software-testing/

6 METHODS OF TESTING - EQUIVALENCE PARTITIONING

2601 Chapter 6 » Methods of testing

if (temperature < 15) { 

returnValue = TEMP_UNDER_15;

} else if (temperature <= 40) { 

returnValue = TEMP_OK;

} else { 

returnValue = TEMP_OVER_40;

} 

return returnValue;

the
expected 

result
for ‘10’

the
expected

result
for ‘25’

the 
expected 

result
for ‘50’

15 40

Class  
TEMP_UNDER_15

Class 
TEMP_OVER_40

Class 
TEMP_OK

http://istqbexamcertification.com/what-is-equivalence-partitioning-in-software-testing/


testIDEA »

6 METHODS OF TESTING - EQUIVALENCE PARTITIONING

2701 Chapter 6 » Methods of testing

if (temperature < 15) { 

returnValue = TEMP_UNDER_15;

} else if (temperature <= 40) { 

returnValue = TEMP_OK;

} else { 

returnValue = TEMP_OVER_40;

} 

return returnValue;

the
expected 

result
for ‘10’

the 
expected 

result
for ‘25’

the 
expected 

result
for ‘50’

15 40

Class  
TEMP_UNDER_15

Class 
TEMP_OVER_40

Class 
TEMP_OK

With the equivalence-partitioning 
technique we only need to test one 
condition from each partition. This is 
because we are assuming that all the 
conditions in one partition will be 
treated in the same way by the 
software. If one condition in a 
partition works, it is assumed all of 
the conditions in that partition will 
work, and so there is little point in 
testing the other conditions.

Similarly, if one of the conditions 
tested in a partition were to fail, then 
we would assume that none of the 
conditions in that partition will work. 
Thus there would be no point in 
testing any more within that 
partition.

ISTQB Exam Certification
http://istqbexamcertification.com/wh
at-is-equivalence-partitioning-in-
software-testing/

http://istqbexamcertification.com/what-is-equivalence-partitioning-in-software-testing/


testIDEA »

6 METHODS OF TESTING - BOUNDARY VALUE ANALYSIS

2801 Chapter 6 » Methods of testing

if (temperature < 15) { 

returnValue = TEMP_UNDER_15;

} else if (temperature <= 40) { 

returnValue = TEMP_OK;

...

Test values 
around 
boundary:

14, 15, 16

Test values 
around 
boundary:

39, 40, 41

e.g. 

-32768,
-32767

Data type 
boundary

e.g. 

32766,
32767

Data type 
boundary

15 40

Class  
TEMP_UNDER_15

Class 
TEMP_OVER_40

Class 
TEMP_OK

...

} else { 

returnValue = TEMP_OVER_40;

} 

return returnValue;

Boundary value analysis (BVA) is 
based on testing at the boundaries 
between partitions. This can be seen 
here where test vectors are 
generated around the boundaries to 
ensure the if...else logic 
functions as designed.

Programming languages, such as C, 
create further boundaries with their 
datatypes. Thus it may also be 
considered prudent to add these 
boundaries to the list of test vectors, 
especially for reusable embedded 
software modules.

ISTQB Exam Certification
http://istqbexamcertification.com/wh
at-is-boundary-value-analysis-in-
software-testing/

http://istqbexamcertification.com/what-is-boundary-value-analysis-in-software-testing/


01

testIDEA

SUMMARY



testIDEA »

7 SUMMARY

• testIDEA can be used for unit and, in some cases, integration testing
as part of a Dynamic Testing approach

• testIDEA can be used to create and manage software tests, executing 
them on the target hardware

• The development of tests is easier when the software is clearly
specified, well documented and suitably abstracted

• The tests themselves must still be considered, defined and
implemented. Equivalence Partitioning and Boundary Value
Analysis are examples of test creation techniques.

01 Chapter 7 » Summary 30


