
02

testIDEA

O B J E C T L E V E L T E S T I N G
Source level testing and

Objectives
At the end of this section, you will be able to

• Explain the advantages and disadvantages of both instrumented testing and object level testing

• Describe how iSYSTEM’s object level testing implements its tests ‘on target’

02

testIDEA

Contents

1 Methods for proof of testing 3-4

2 The goals - What standards expect 5-6

3 The goals - Source coverage types 7-8

4 Source level analysis - Challenges summary 9

5 Source and object level testing - The differences 10

6 Non-instrumented object level testing 11-18

7 Original Binary Code (OBC) Testing 19-20

8 Summary 21-22

O B J E C T L E V E L T E S T I N G

testIDEA »

Especially in the area of Functional
Safety, it is necessary to provide
proof of how much of your
application’s software was tested.
The proof can be generated by
executing a test suite of code that
exercises, as far as possible, every
function or method within your
application and works through every
decision outcome that is found.
There are essentially two methods
for creating this proof:

• Code instrumentation – essentially
adding code that logs the outcome
of decisional branch statements

• Object code trace – using the
microprocessor’s hardware trace
output to log the outcome of
decisional branch statements

1 METHODS FOR PROOF OF TESTING

302 Chapter 1 » What standards expect

C
O

D
E

“B
U

G
-F

R
EE

”
W

O
R

K
IN

G
 A

P
P

LI
C

AT
IO

N

M
EE

T
R

EQ
U

IR
EM

EN
TS

 O
F

ST
A

N
D

A
R

D

Source level analysis
using instrumented code

Object level analysis
using original binary code

GOALSGIVEN

testIDEA »

Each method has its disadvantages
and advantages, which will be
covered here and in following units.

However, regardless of which method
is used, most standards that cover
functional safety will require that the
code coverage for the application
code can be determined through
measurement and that the tests are
generated using a proven
methodology.

1 METHODS FOR PROOF OF TESTING

402 Chapter 1 » What standards expect

C
O

D
E

“B
U

G
-F

R
EE

”
W

O
R

K
IN

G
 A

P
P

LI
C

AT
IO

N

M
EE

T
R

EQ
U

IR
EM

EN
TS

 O
F

ST
A

N
D

A
R

D

Source level analysis
using instrumented code

Object level analysis
using original binary code

GOALSGIVEN

testIDEA »

As a result of these standards, the
most common approach for proving
that the code has been fully tested is
by using code instrumentation. This
involves using tools that add code to
your application that log the path
taken when decisions are made, such
as the path taken through the code in
an if statement.

This instrumented version of the
code is then executed on a PC using a
simulated version of the target
processor. However, the PC
simulation can rarely fully reflect all
of the complexity of a
microcontroller and its peripherals in
a real-time application.

2 THE GOALS - WHAT STANDARDS EXPECT

502 Chapter 1 » The goals - What standards expect

DO-178B/C and ISO26262 assume
source level code coverage analysis

Typical process

 Code is instrumented, then executed on PC using target
processor simulator

 Test repeated on target with same test vectors - or -

 Instrumented code run on target - results transferred to PC
for comparison

testIDEA »

Thus, the code is then executed again
on the target microcontroller in one
of two ways:

• The instrumented version of the
application code is executed on
the target, with the decision logic
outcomes being logged.

• The non-instrumented version of
the application code is executed
with the results of the tests only
being logged.

However, the instrumented version
will be slowed down due to the extra
code overhead – a huge issue in real-
time applications – and the non-
instrumented version is no longer the
same code as the version tested on
the PC, due to the missing
instrumentation code.

2 THE GOALS - WHAT STANDARDS EXPECT

602 Chapter 1 » The goals - What standards expect

DO-178B/C and ISO26262 assume
source level code coverage analysis

Typical process

 Code is instrumented, then executed on PC using target
processor simulator

 Test repeated on target with same test vectors - or -

 Instrumented code run on target - results transferred to PC
for comparison

testIDEA »

To find a good balance between time
spent generating and executing tests,
different coverage levels are defined
that depend on the risk to life the
application poses. Achieving a certain
level of code coverage requires
analysis of the source code and
writing tests that achieve that
coverage level.

For example, statement coverage
simply requires that the tester can
prove that all source code statements
(lines of code) in the application
were, during all rounds of testing,
executed at least once. Obviously this
could leave some bugs unfound if the
complexity of some decision making
code isn’t fully analyzed.

702 Chapter 3 » The goals - Source coverage types

• Statement coverage

• Function coverage

• Call coverage

• Decision coverage

• Branch coverage

• MC/DC - Modified
Condition/Decision
Coverage

Least Risk
to Life

Greatest Risk
to Life

3 THE GOALS - SOURCE COVERAGE TYPES

testIDEA »

As the risk to life increases, so more
time must be invested in creating the
tests and more time must be spent
analysing the functionality of the
code. As such, it is necessary to start
to analyse the decision making
elements of the application,
developing enough tests that ensure
enough of the logical outcomes have
been proven to have been tested.

802 Chapter 3 » The goals - Source coverage types

• Statement coverage

• Function coverage

• Call coverage

• Decision coverage

• Branch coverage

• MC/DC - Modified
Condition/Decision
Coverage

3 THE GOALS - SOURCE COVERAGE TYPES

Least Risk
to Life

Greatest Risk
to Life

testIDEA »

4 SOURCE LEVEL ANALYSIS - CHALLENGES SUMMARY

9

Due to the additional
instrumentation code, recompilation
of the application using different
compiler switches, differences
between simulated and real
hardware, and the impact the new
code and its size may have on the
real-time behavior of the code when
it is executed on the target
microcontroller, it often becomes
very challenging to prove the link
between the instrumented and
original code as well as the validity of
the test results.

02 Chapter 4 » Source level analysis - Challenges summary

Instrumented Code ≠ Original Code

• Real-time behaviour changes
− Extra cycles needed to

execute test code
− Tasks may not complete

on time
− Page boundaries change
− Potential cache misses
− System test not possible

• Recompilation required
− Increases code size
− May require communication a

resource (e.g. UART) to
deliver results to host PC

• Changes in compiler behaviour
− Different compiler switches

used
− Additional, new code
− Evaluation of conditional

code may change

• Are silicon differences reflected in
simulation environment?

testIDEA »

5 SOURCE AND OBJECT LEVEL TESTING - THE DIFFERENCES

1002 Chapter 5 » Source and object level testing - The differences

Source level testing

• Executed on host PC
• Source code executed
• On (instruction set) simulator

for the target CPU

Object level testing

• Executed on real target
• Object code executed
• No test driver software

running on target
• Integrated into the development

environment (debugger)

With the proliferation of hardware
trace, even on low-cost
microcontrollers, it has become
easier to test ‘on target’, examining
the collected program flow after
testing on the PC. This enables the
application code to be executed
without the overhead of
instrumentation, as well as allowing
the code to interact in real-time with
peripherals.

Also, since the code size remains the
same and is compiled with the same
switches, issues caused by cache
misses and other run-time hardware-
based differences, are avoided.

It is even possible to test optimized
versions of code.

testIDEA »

6 NON-INSTRUMENTED OBJECT LEVEL TESTING

1102 Chapter 6 » Non-instrumented object level testing

Non-instrumented object level
testing requires a development
environment that can communicate
with the target hardware directly. The
iSYSTEM development environment
consists of a test creation and
execution package (testIDEA) and a
connection to the hardware target
(winIDEA together with the chosen
BlueBox™).

Using the isystem.connect SDK in the
background, generated tests are
executed directly on the target with
the results being collected in real
time. If required, code coverage can
also be collected and the statistics
turned into reports for
documentation purposes.

Test specification

SCRIPT
Tester.loadTestSpec(testSpecFile)

isystem.connect
isystem.test

winIDEA

BlueBox™

MCU

testIDEA

testIDEA »

6 NON-INSTRUMENTED OBJECT LEVEL TESTING

1202 Chapter 6 » Non-instrumented object level testing

Object level testing relies upon an
understanding of how the compiler
used works – specifically, how it
creates a stack frame when calling a
function and how it acquires any
return value. This know-how has
been used by iSYSTEM to develop
testIDEA. Thus, those developing the
tests do not need to concern
themselves with such details.

In this example, assume we are
currently in the main() function.
The compiler will have already
ensured that code is in place to
prepare the stack to support this
function. This includes reserving
space for local variables, return
address, and so on.

Local Variables for
calling function

Return Address

Parameters for
calling function

Stack Frame
for calling
function
main()

SRAM

testIDEA »

6 NON-INSTRUMENTED OBJECT LEVEL TESTING

1302 Chapter 6 » Non-instrumented object level testing

At some point in the code a function
is called. In this case, it is the function
evaluateSwitch(), passing in
the parameter “1370”.

evaluateSwitch(1370);

Local Variables for
calling function

Return Address

Parameters for
calling function

Stack Frame
for calling
function
main()

SRAM

testIDEA »

6 NON-INSTRUMENTED OBJECT LEVEL TESTING

1402 Chapter 6 » Non-instrumented object level testing

At this point a new stack frame is
created in RAM memory. Space on
this frame is also reserved to pass the
parameter (1370) to the function
being called, as can be seen here
inside the brown frame.

Upon completion of the execution of
the function, the return value can be
found on the stack.

SRAM

Stack Frame
for
evaluateSwitch()

Local Variables for
evaluateSwitch()

Return Address

Parameters for
evaluateSwitch()

Return Address

Parameters for
main()

Stack Frame
for calling
function
main()

Local Variables for
main() evaluateSwitch(1370);

testIDEA »

6 NON-INSTRUMENTED OBJECT LEVEL TESTING

1502 Chapter 6 » Non-instrumented object level testing

testIDEA utilizes this intimate
understanding of stack frame
creation to execute tests for
functions.

After creating a test within testIDEA,
where an expected response is linked
to one or more passed parameters,
the function to be tested can be
executed in isolation. The desired
parameters are passed in, the
function is executed in place until it
returns, whereupon the processor is
halted again. Using the debug
interface provided by the winIDEA
development environment, the
resulting return value can be
retrieved from the stack of the
microcontroller. If the value matches
that expected, the test passes.
Otherwise, the test fails.

SRAM

Local Variables for
evaluateSwitch()

Return Address

Local Variables for
loop()

Return Address

Parameters for
loop()

evaluateSwitch(voltage);

Parameters for
evaluateSwitch()

Parameter 1 = 1370
Expected Response = SWITCH_NORM_VAL

Stack Frame
for
evaluateSwitch()

Stack Frame
for calling
function
main()

testIDEA »

6 NON-INSTRUMENTED OBJECT LEVEL TESTING

1602 Chapter 6 » Non-instrumented object level testing

By making use of various features of
the BlueBox™ development
hardware, it is also possible to collect
code coverage information during
the execution of the function under
test. This also includes
microcontrollers that don’t even offer
any form of hardware trace interface.
Such capabilities will be covered in
this training together with how to
generate suites of test for a variety of
purposes and goals.

SRAM

Local Variables for
evaluateSwitch()

Return Address

Local Variables for
loop()

Return Address

Parameters for
loop()

evaluateSwitch(voltage);

Parameters for
evaluateSwitch()

Parameter 1 = 1370
Expected Response = SWITCH_NORM_VAL

Stack Frame
for
evaluateSwitch()

Stack Frame
for calling
function
main()

testIDEA »

2 NON-INSTRUMENTED OBJECT LEVEL TESTING

02 Chapter 1 » The goals - What standards expect 7

To further underline the difference
between instrumented and non-
instrumented testing, we provide the
example code opposite that was
taken from a real application that has
had code instrumentation inserted
into it by a code instrumentation
tool.

In this case, it is the exit of the
function call that has been
instrumented. In total, 12 additional
assembler instructions have been
inserted. At a single-cycle execution
rate of 50MHz, this would equate to
the exit of each function taking at
least 240ns longer to complete.

In a real-time system, this change is
likely to have a great impact on the
functionality of the application.

• 12 extra instructions

• > 240ns @ 50MHz

testIDEA »

2 NON-INSTRUMENTED OBJECT LEVEL TESTING

02 Chapter 1 » The goals - What standards expect 7

This disconnect between
instrumented and non-instrumented
code, or results from a simulated and
a real processor, will cause challenges
either in the testing itself or in trying
to convince a certification authority
of the reliability of the resulting
evidence.

• 12 extra instructions

• > 240ns @ 50MHz

testIDEA »

Object level testing has been
compared with instrumented testing
methods by various organizations,
including CAST, an international team
of certification and regulatory
authority representatives from North
and South America, Europe, and Asia.

Overall, binary code testing is
considered equal in its purpose to
instrumented methods of testing.
However, simply proving that all
branch possibilities have occurred at
binary level is not equivalent to all
test strategies that can be
undertaken that have knowledge of
the source code. Specifically, this is
the case with MC/DC testing, which
does still require source code
analysis.

7 ORIGINAL BINARY CODE (OBC) TESTING

1902 Chapter 7 » Original Binary Code (OCB) Testing

• Considered equal to source code coverage analysis
− Reviewed by CAST (Certification Authorities Software Team)

• Tests should be developed with knowledge of the source code
(note comments on MC/DC)

• May need to show that object level code coverage
is equivalent to source level analysis

testIDEA »

Due to the fact that instrumented
approaches to testing are more
established than object level testing,
there may be some issues when
submitting results to a certifying
body. In such cases, you may be
required to show that the object
level testing is equivalent to an
instrumented, source-level testing
methodology. The best advice here is
to communicate with such bodies
early in the test design process to
ensure that everyone is satisfied with
the approach chosen.

If you are undertaking testing merely
to improve software quality and have
no certification pressures, the
testIDEA approach and tools will be
more than adequate in most cases.

7 ORIGINAL BINARY CODE (OBC) TESTING

2002 Chapter 7 » Original Binary Code (OCB) Testing

• Considered equal to source code coverage analysis
− Reviewed by CAST (Certification Authorities Software Team)

• Tests should be developed with knowledge of the source code
(note comments on MC/DC)

• May need to show that object level code coverage
is equivalent to source level analysis

For more details on the CAST findings, take a look at this link

http://isy.si/li-000016

02

testIDEA

SUMMARY

testIDEA »

8 SUMMARY

• Code instrumentation is the incumbent method for testing

• Original Binary Code (OBC) testing is, in most cases,
more than adequate

• The iSYSTEM OBC method also allows code coverage
to be generated even when the microcontroller is missing
the necessary hardware trace interface

02 Chapter 8 » Summary 22

