
03

testIDEA

F I R S T S T E P S A N D T E S T C A S E S
Objectives
At the end of this section, you will be able to

• Describe the function of the key interfaces within testIDEA

• Create a base test followed by further tests built upon the base test

• Execute tests on the chosen microcontroller target

• Create, extend and modify tests using the “table” view

03

testIDEA

Contents

1 How the system works 3-4

2 Requirements 5

3 Connection to winIDEA 6

4 First steps with testIDEA 7-15

5 Setup the testing environment 16-23

6 Create a new base test 24-34

7 Create a derived test 35-47

8 Adding more tests - table of test cases 48-55

9 Handling test cases 56-66

10 Summary 67-68

F I R S T S T E P S A N D T E S T C A S E S

testIDEA »

1 HOW THE SYSTEM WORKS

303 Chapter 1 » How the system works

winIDEA

BlueBox™

MCU

testIDEA

Test specification
/ External test
cases

In this training package, we will
mostly assume that the user knows
how to approach testing their
application to fulfil the demands of
their application’s requirement.
However, even if you don’t, you will
pick up some tips and ideas as we
show how certain types of code
constructs in C and C++ can be
tested.

Effective testing can only be achieved
with a clear test specification. This
can simply be a Word or Excel
document if no other formal system
is in place.

testIDEA is used to actually write the
tests, providing input parameters and
expected outcomes for each function
or method to be tested.

Configuration
covered in
BSC0001

testIDEA »

1 HOW THE SYSTEM WORKS

403 Chapter 1 » How the system works

winIDEA

BlueBox™

MCU

testIDEA

Test specification
/ External test
cases

It is important to note that testIDEA
cannot automatically create tests. It
does, however, through various
means such as importing test vectors
and automation features, help in the
creation of tests.

In order for testIDEA to work, it
needs access to an instantiation of
winIDEA that has a working and
correctly configured workspace, set
up to work with the selected
BlueBox™ hardware and the chosen
microcontroller. The steps required to
achieve this are covered in our
training course BSC0001 –
Introduction to winIDEA.

Configuration
covered in
BSC0001

http://isy.si/bsc0001

testIDEA »

Before any tests can be executed,
target initialization must also occur
i.e. the start-up code prior to
main() must have been executed.
This will ensure that the stack is
allocated. Depending on the target
microcontroller, further code may
also need to be executed to ensure

• Memory spaces are
configured

• MCU peripherals are
initialized (clocks, ports...)

• Global data is initialized

Additionally, all functions or methods
to be tested must exist in memory.
Most compilers will optimize away
code that is not used. You may need
to write a simple application example
that specifically calls all the code to
be tested.

2 REQUIREMENTS

503 Chapter 2 » Requirements

Requirements

• A winIDEA workspace and suitable configuration for target
development board

• Target initialization must work
• Download executable code onto target MCU
• All functions or methods to be tested must exist in memory

Before starting with testIDEA

1. Download application code to target memory
2. Execute run until function main()

testIDEA »

3 CONNECTION TO winIDEA

6

When creating a test specification
within testIDEA, function, method
and variable names must be
specified.

winIDEA knows the names of all
functions and variables from the
debug information provided in binary
files (e.g. ELF file) and testIDEA can
acquire this information from
winIDEA to help us with auto-
completion. Therefore it is
convenient to have winIDEA running
when creating tests.

The connection status between
testIDEA and winIDEA is shown in the
bottom left corner of the iSYSTEM
testIDEA window.

03 Chapter 3 » Connection to winIDEA

If testIDEA was started from winIDEA, then it will automatically
connect to this instance of winIDEA. If we close the winIDEA instance,
testIDEA will loose this connection. In such situations you will need to
close and restart testIDEA.

winIDEA must be able to download the code in order for symbols to be
available. If there is no hardware target available, switching winIDEA to
demo mode is a suitable work-around.

testIDEA »

4 FIRST STEPS WITH testIDEA

703 Chapter 4 » First steps with testIDEA

Starting testIDEA

The simplest method is to use the
menu option within winIDEA: Test →
Launch testIDEA (as displayed right).

If testIDEA has already been started,
the menu option from within
testIDEA iTools → Connect to winIDEA
enables testIDEA to connect to an
existing instance of winIDEA.

Finally, simply pressing the Refresh
button within testIDEA will open a
dialog box asking whether we want
to connect (covered in later slides).

It is also possible to configure
testIDEA to connect to winIDEA
automatically using iTools →
Preferences → testIDEA → Connect
automatically.

From within a winIDEA workspace:

testIDEA »

4 FIRST STEPS WITH testIDEA

803 Chapter 4 » First steps with testIDEA

When we first open testIDEA for a
workspace for which no test
specification has been created, we
will be asked if we want to create an
*.iYAML file by default. It is
recommended to accept this default
setting as the testIDEA workspace
will be stored in the correct folder
(same as winIDEA workspace)
automatically.

If this window doesn’t appear, it
might be that there is already an
existing testIDEA workspace or that it
is hidden in the background of
winIDEA window.

testIDEA »

4 FIRST STEPS WITH testIDEA

903 Chapter 4 » First steps with testIDEA

testIDEA user interface

Once testIDEA has been started, you
will be confronted by the following
user interface.

The following slides guide you
through the various interface areas
and the key menu options.

Once this has been covered, you will
be ready to start creating your first
tests.

Grob die einzelnen Elemente erklären

testIDEA »

4 FIRST STEPS WITH testIDEA

1003 Chapter 4 » First steps with testIDEA

testIDEA user interface

Outline
This view contains a list of all test
cases. By clicking a test case in the
tree, its content is displayed in Test
Case Editor area. The context menu
of the Outline view contains options
for creating and deleting test cases.

Outline

testIDEA »

4 FIRST STEPS WITH testIDEA

1103 Chapter 4 » First steps with testIDEA

testIDEA user interface

Outline
This view contains list of all test
cases. By clicking a test case in the
tree, its content is displayed in Test
Case Editor area. The context menu
of the Outline view contains options
for creating and deleting test cases.

Test Case Editor Area
This area contains editors with
controls for viewing and modifying a
test case.

Test Case Editor Area

Outline

testIDEA »

4 FIRST STEPS WITH testIDEA

1203 Chapter 4 » First steps with testIDEA

testIDEA user interface

Outline
This view contains list of all test
cases. By clicking a test case in the
tree, its content is displayed in Test
Case Editor area. The context menu
of the Outline view contains options
for creating and deleting test cases.

Test Case Editor Area
This area contains editors with
controls for viewing and modifying a
test case.

Test Status View
This view displays status messages.
Summaries of test results and error
messages during editing are
displayed here.

Test Case Editor Area

Outline

Test Status View

testIDEA »

4 FIRST STEPS WITH testIDEA

1303 Chapter 4 » First steps with testIDEA

Main menu bar

File menu

The file menu contains the options to
save *.iYAML files, import and export
options and the option to change
testIDEA settings via the “Properties”
dialogue.

Edit menu

The edit menu offers the common
edit options, such as copy and paste,
as well as some testIDEA specific
paste options.

testIDEA »

4 FIRST STEPS WITH testIDEA

1403 Chapter 4 » First steps with testIDEA

Main menu bar

Test menu

Via the test menu new tests can be
created. Additionally, advanced
grouping of tests can also be
implemented. Further options allow
all or selected tests to be executed,
based upon selection or filter
settings. Test reports can also be
configured and created here.

iTools menu

Via this menu, the connection to
winIDEA and the project’s symbols
can be (re)established. Further
advanced options are also offered
here, along with access to testIDEA’s
preferences.

testIDEA »

4 FIRST STEPS WITH testIDEA

1503 Chapter 4 » First steps with testIDEA

Main tool bar

The main tool bar offers some
common file and edit options as well
as various options for test execution,
such as the option to run only
selected test vectors. These options
can be used to acquire quick test
results or a merged coverage
measurement for a select number of
specific test vectors.

Furthermore, there are a few buttons
for debug options that allow the
code being tested to be debugged
during the execution of the test.
These options will be explained at
the end of this unit.

New *.iYAML file

Open*.iYAML file

Save

Save all

Cut

Copy

Paste

Initialize Target

Run
all

Run selected

Run selected
and derived

Run with filter

Test Debug Options
(covered later)

Code execution
options

Edit
options

File
options

testIDEA »

Before execution of any tests, it is
necessary to define some settings for
the testing environment. This can be
undertaken via the “Properties”
option in the “File” menu.

5 SETUP THE TESTING ENVIRONMENT

1603 Chapter 5 » Setup the testing environment

It is also possible to run test vectors without manually configuring the following setup
options. In this case a window, suggesting use of the default settings, will appear when
you start running your test vectors for the first time. It is recommended to accept the
default settings if you did not make any changes in the “Properties” dialogue.

Skipping Setup Options

testIDEA »

In the “General” settings, we can link
the currently open winIDEA
workspace to the testIDEA iYAML test
specification file. This ensures that
the test specification is linked to the
winIDEA workspace to which it
belongs whenever it is opened.

It is recommended to create the
connection between winIDEA and
testIDEA by using the “To test spec.”
button. This ensures that the
workspace with which testIDEA was
started is associated with the tests.

5 SETUP THE TESTING ENVIRONMENT

1703 Chapter 5 » Setup the testing environment

testIDEA »

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

“Always run init sequence
before run” should be checked

5 SETUP THE TESTING ENVIRONMENT

1803 Chapter 5 » Setup the testing environment

1

1

testIDEA »

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

“Always run init sequence
before run” should be checked

Click on the plus symbol
and select a reset action

5 SETUP THE TESTING ENVIRONMENT

1903 Chapter 5 » Setup the testing environment

1

1

2 2

testIDEA »

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

“Always run init sequence
before run” should be checked

Click on the plus symbol
and select a reset action

Modify the next action to be a
download action

5 SETUP THE TESTING ENVIRONMENT

2003 Chapter 5 » Setup the testing environment

1

2 2

3 3

1

testIDEA »

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

“Always run init sequence
before run” should be checked

Click on the plus symbol
and select a reset action

Modify the new action to a
download action

Add another action to delete
all breakpoints →
delAllBreakpoints

5 SETUP THE TESTING ENVIRONMENT

2103 Chapter 5 » Setup the testing environment

1

2 2

3 3

1

4
4

testIDEA »

The last action is to execute
the code on the target (→ run
action) but only up to the
entry of the main() function
(‘main’ as params. means run
until main).

Typically this is all that is required
since, when the processor reaches
the main function, the stack will have
been initialized, a requirement for
execution of original binary code tests
on the target.

5 SETUP THE TESTING ENVIRONMENT

2203 Chapter 5 » Setup the testing environment

5

5

If peripherals on the microcontroller also
need to be instantiated prior to executing
the tests, you may wish to name an
alternate function to halt at here.

testIDEA »

Setup run configuration:

It is recommended to start by setting
the test execution timeout to
5000ms.

A 5 second timeout means:
in the event that the code on the
target microcontroller hangs
unexpectedly, perhaps it gets stuck in
an infinite loop, after 5 seconds it will
time out and provide an error, rather
than hanging indefinitely.

5 SETUP THE TESTING ENVIRONMENT

2303 Chapter 5 » Setup the testing environment

testIDEA »

Take a look at the following source
code:

The function that we want to create
unit tests for is named
evaluateTemperature(), a simple
function that accepts a single
parameter by value and delivers a
single return parameter by value. The
return value is of type Thermostat,
and is limited to four possible values.

During code development it was
decided to create a new data type
using enum rather than define the
values using #define. This conscious
decision simplifies test creation since
testIDEA will find the Thermostat
type automatically in the binary file’s
symbols.

6 CREATE A NEW BASE TEST - THE APPLICATION

2403 Chapter 6 » Create a new base test - The application

if (temperature < 15) {

returnValue = TEMP_UNDER_15;

} else if (temperature <= 40) {

returnValue = TEMP_OK;

} else {

returnValue = TEMP_OVER_40;

}

return returnValue;

}

OK

Thermostat thermostateControl =

TEMP_ERROR;

Thermostat evaluateTemperature(

signed int temperature) {

By sticking to an agreed coding standard (such as using an enum rather than
#define as seen here), the resulting code becomes easier to debug and
maintain.

enum Thermostat {

TEMP_ERROR,

TEMP_UNDER_15,

TEMP_OK,

TEMP_OVER_40

};

testIDEA »

Set up of the testing environment

We will start by creating a base test
which we do not want to actually
execute. This is a template for the
tests we wish to create.

We will then derive further tests
from the base test.

The base test can be imagined as a
template containing all of the key
information for testing a C function
or a C++ method that is common to
all of the tests. Anything that is
specific to each individual test (such
as input parameters or return values)
is left out.

6 CREATE A NEW BASE TEST - CONCEPT

2503 Chapter 6 » Create a new base test - Concept

Template
→ common elements

individual

individual

individual

individual

Base test

Derived
test 1

Derived
test 2

Derived
test 3

…

e.g. Function name,
function description,
code-coverage…

e.g. Parameters,
expected values, …

testIDEA »

A new base test is created by using
the “Test” menu in the main menu
bar and selecting “New Test…”

6 CREATE A NEW BASE TEST

2603 Chapter 6 » Create a new base test

testIDEA »

When we first click on the function
drop down menu there is nothing
available in terms of function names
for testing. This is because this new
instantiation of testing isn’t currently
connected to a winIDEA project.
Clicking on the Refresh button will
establish this connection and all the
symbol information from the binary
file will be transferred to testIDEA.

6 CREATE A NEW BASE TEST

2703 Chapter 6 » Create a new base test

Using the Refresh Button will also
change the state of testIDEA

testIDEA »

When we now open the drop-
down menu, all of the functions
that are included in the symbols
of the associated binary file are
listed. It is now possible to
select the function called
evaluateTemperature() from
this list.

6 CREATE A NEW BASE TEST

2803 Chapter 6 » Create a new base test

1

1

testIDEA »

When we now open the drop-
down menu, all of the functions
that are included in the symbols
of the associated binary file are
listed. It is now possible to
select the function called
evaluateTemperature() from
this list.

The return type and the type
and variables associated with
the parameter list are then
automatically filled in the field
below as this information has
been extracted from the binary
file.

6 CREATE A NEW BASE TEST

2903 Chapter 6 » Create a new base test

1

1

2

2

testIDEA »

This is all we have to do for this
particular test because the only
common element for further
derived unit tests will be the
name of the function.
The parameter and the
expected return value will be
test dependent, so we leave
these fields empty for now.

6 CREATE A NEW BASE TEST

3003 Chapter 6 » Create a new base test

3

1
2

3

3

testIDEA »

This is all we have to do for this
particular test because the only
common element for further
derived unit tests will be the
name of the function.
The parameter and the
expected return value will be
test dependent, so we leave
these fields empty for now.

Click “Finish” and you will have
created your first base test.

6 CREATE A NEW BASE TEST

3103 Chapter 6 » Create a new base test

3

1
2

3
4

4

3

testIDEA »

The Meta form:

We will now clear the “Execute” box
in the “Meta” section as we do not
want to execute this base test, as
there are no parameters and no
expected return values in this test
template.

6 CREATE A NEW BASE TEST

3203 Chapter 6 » Create a new base test

testIDEA »

The Function form:

Looking at the function form, we can
check that the inputs from the prior
steps are correctly displayed.

6 CREATE A NEW BASE TEST

3303 Chapter 6 » Create a new base test

testIDEA »

After completing the first base test it
is recommended to save the file.

6 CREATE A NEW BASE TEST

3403 Chapter 6 » Create a new base test

testIDEA »

Derived tests:

• Tests are organized hierarchically
in a tree structure

• Tests at the top level are called
base tests (parent) while their
children are called derived tests

• Derived tests can inherit traits
from lower level tests

Derived tests may override settings of
the base test if required.

7 CREATE A DERIVED TEST - CONCEPT

3503 Chapter 7 » Create a derived test - Concept

Base test

Derived
test 1

Derived
test 2

Derived
test 3

…

Inherit

testIDEA »

Basically, anything that exists in a
base test will also be copied to the
derived test.

If a field was filled with information,
it appears filled in the derived test.

If a field was unfilled, it remains
unfilled in the derived test.

On the right we have an example of a
base test (top) and the derived test
(bottom). The derived test has
inherited the function ECLIB_Sqr_16
and, as a result, it is grayed out (in
blue) to protect it from change.

7 CREATE A DERIVED TEST - HEREDITY

3603 Chapter 7 » Create a derived test - Heredity

Base Test

Derived Test

testIDEA »

As there were no parameters entered
into the base test, there are no
parameters in the derived test. The
related field remains white and it is
possible to enter values.

7 CREATE A DERIVED TEST - HEREDITY

3703 Chapter 7 » Create a derived test - Heredity

Base Test

Derived Test

testIDEA »

As there were no parameters entered
into the base test, there are no
parameters in the derived test. The
related field remains white and it is
possible to enter values.

The Inherit setting refers to the
elements the derived test inherits
from the test from which it is derived
(in this case, our base test).

In both cases, the Inherit setting is
set to intermediate in the derived
test, the default setting. This is
indicated by the black check box. The
intermediate setting indicates that
the field will inherit entries from the
test from which is was derived,
protecting them from change, unless
the field was empty, leaving the field
open for editing.

7 CREATE A DERIVED TEST - HEREDITY

3803 Chapter 7 » Create a derived test - Heredity

Base Test

Derived Test

testIDEA »

The Inherit setting can be set to:

• Unchecked: to explicitly not inherit
entries from the base test.

• Intermediate: inherit and protect
entries derived from the base test,
if there; otherwise leave empty.

• Checked: explicitly inherit the
setting from the base test.

Always develop the base test using
the lowest common denominator of
settings. Exceptions to the common
denominator can then be edited by

hand for the few outliers in your
derived tests.

7 CREATE A DERIVED TEST - HEREDITY

3903 Chapter 7 » Create a derived test - Heredity

Base Test

Derived Test

testIDEA »

We want to test
evaluateTermperature() using a
boundary testing strategy
(boundaries of the data types are not
considered in this example):

signed int temperature = 14

signed int temperature = 15

signed int temperature = 16

signed int temperature = 39

signed int temperature = 40

signed int temperature = 41

The created base test will be used to
create derived tests.

7 CREATE A DERIVED TEST - FIND PARAMETERS AND EXPECTED VALUES

4003 Chapter 7 » Create a derived test - Find parameters and expected values

Set of values
around
boundary:

14, 15, 16

Set of values
around
boundary:

39, 40, 41

15 40

Class
TEMP_UNDER_15

Class
TEMP_OVER_40

Class
TEMP_OK

if (temperature < 15) {

returnValue = TEMP_UNDER_15;

} else if (temperature <= 40) {

returnValue = TEMP_OK;

...

...

} else {

returnValue = TEMP_OVER_40;

}

return returnValue;

testIDEA »

To create a new derived test start by
selecting the base test we created
with the mouse. Then open the
context menu (right mouse click) in
the Outline from the base test and
select “New Derived Test…“.

The New derived test case wizard will
open.

7 CREATE A DERIVED TEST

4103 Chapter 7 » Create a derived test

testIDEA »

We do not need to enter
anything into the function field,
because this test inherits the
information from the base test.

7 CREATE A DERIVED TEST

4203 Chapter 7 » Create a derived test

1

1

testIDEA »

We do not need to enter
anything into the function field,
because this test inherits the
information from the base test.

We can now add a test input
parameter; in this example we
choose 15°C as a parameter
value.

7 CREATE A DERIVED TEST

4303 Chapter 7 » Create a derived test

1

1
2

2

testIDEA »

Next we have to define the
expected return value for this
test parameter. In the case of a
15°C input value we expect
TEMP_OK as the return value as
it lies in the 15° to 40° range
programmed in the code.
_isys_rv is a default return value
variable that testIDEA creates for
us in order to capture any return
value that results from tested
functions.
In the Expected result field we
can enter any valid C/C++
evaluation expression using test
or target variables, registers, or
I/O module input ports.

The returned value is then
verified against this expected
value or expression.

7 CREATE A DERIVED TEST

4403 Chapter 7 » Create a derived test

1

2

3

3

testIDEA »

Clicking “Finish” will create
your first derived test

Save some time typing by simply
copying the return value text from

the source code in the winIDEA editor
window and pasting it into the

“Expected result” field.

7 CREATE A DERIVED TEST

4503 Chapter 7 » Create a derived test

1

2

4

3

4

testIDEA »

In the test case’s options list you can
now see that some of the arrows
turned blue. These blue arrows
indicate options with values entered
into them. The blue arrow with the
small backward symbol indicates
some of the fields contain inherited
elements.

Selecting the Function form, we see
that the Function field and other blue
colored elements are inherited
entries, whilst the Parameter field is
unique to this test case.

7 CREATE A DERIVED TEST - FUNCTION DATA

4603 Chapter 7 » Create a derived test - Function data

testIDEA »

Selecting the Expected values view
we see that our expected value
“TEMP_OK” is listed here as the
comparison for the returned result.

7 CREATE A DERIVED TEST - EXPECTED VALUE DATA

4703 Chapter 7 » Create a derived test - Expected value data

testIDEA »

The Save icon can be used to save
the updated test specification.

By clicking on Run all tests, the binary
code will be downloaded to the
target, the tests executed, and the
result returned via the testIDEA Test
Status View area.

7 CREATE A DERIVED TEST - RUN

4803 Chapter 7 » Create a derived test - Run

Save
Run all
tests

testIDEA »

We can now review the test results in
the test output view at the bottom of
testIDEA.

The green background means that all
the tests that have been executed
have passed and our derived test is
marked as OK

When the tests complete, testIDEA
marks each test and section in the
Outline window with a marker. If
everything was OK, a green check
mark is shown, otherwise we get a
red mark with cross inside.

7 CREATE A DERIVED TEST - TEST RESULTS

4903 Chapter 7 » Create a derived test - Test result

testIDEA »

In order to use the test results for
reporting purposes, we need to
identify the tests executed. The Meta
form can be used to give this test an
identifier (ID).

• Test ID
Test ID is used for documentation
and maintaining a relationship to
software requirements.

• Description
Human readable description of the
test.

• Tags
Self-defined tags could be added,
easiing grouping of tests.

When finished click OK and the test
appears in the Outline view.

7 CREATE A DERIVED TEST - META DATA

5003 Chapter 7 » Create a derived test - Meta data

Congratulations! You have created your first test vectors!

.

testIDEA »

As we don’t want to jump between
different forms all the time when
creating tests, it makes sense from
this point on to use the table view to
create further tests.

Changing to table view requires us to
select the base test again in the
Outline. Next, we have to choose
some options from the test
environment that we want displayed
in the table. It is recommended to
display at least Meta data, Function
data and Expected return value data
at this stage in our example.

8 ADDING MORE TESTS - TABLE OF TEST CASES

5103 Chapter 8 » Adding more tests - Table of test cases

testIDEA »

8 ADDING MORE TESTS - TABLE OF TEST CASES

5203 Chapter 8 » Adding more tests - Table of test cases

Blue:
Inherited
elements

Green:
Individual elements that
have already been entered
in previous steps. These
elements can be changed
manually in the table.

If we now view the tests created, we
can see the base test and our first
derived test in a format not dissimilar
to Excel.

A blue background on a field
indicates an inherited, non-editable,
element. This is the case in the
example opposite for our first test,
where the function name is
inherited.

A green background is used for lists
of values that can be passed as
parameters. This is the case for the
input parameter 15 that was entered
in our first derived test.

testIDEA »

This view allows us to quickly
generate further tests very quickly
based upon our base test.

To add another test simply click on
the plus symbol and another test
case will be created, with empty
fields where test-dependent values
can be entered.

8 ADDING MORE TESTS - TABLE OF TEST CASES

5303 Chapter 8 » Adding more tests - Table of test cases

testIDEA »

Note: It is not possible to copy the
content of a cell and paste it into a
cell as plain text.

Reason: When a cell is copied there is
a lot of background information
associated with the test copied with
it, such as references to the original
cell. If you attempt to paste this
information into a cell as plain text,
all the additional background
information will also be inserted.

Try copying a cell and then pasting
the data it into a text editor to better
understand this issue.

8 ADDING MORE TESTS - TABLE OF TEST CASES

5403 Chapter 8 » Adding more tests - Table of test cases

Copy / Paste-options

1. Copy content of a cell and paste it into another
selected cell

2. Copy text from a cell and paste it as text into a cell

3. Copy content of a whole test case option (such as
Expected values) and paste it to another test case

testIDEA »

Using the boundary strategy as the
basis for test creation, we can create
all the test vectors discussed earlier
for our evaluateTemperature()
example from the base test.

The screen shot opposite shows how
the resulting unit tests will appear
with their unique params values and
expected expressions results.

8 ADDING MORE TESTS - TABLE OF TEST CASES

5503 Chapter 8 » Adding more tests - Table of test cases

testIDEA »

testIDEA offers a few further
capabilities and concepts which may
be helpful once basic test creation
has been mastered. You can view
these items in the following slides or
select individual topics from the links
on the right.

9 HANDLING TEST CASES

5603 Chapter 9 » Handling test cases

1. What to do when tests fail
Go to “When tests fail”

2. Set test ID automatically
Go to “Set test ID automatically”

3. Interpolation between parameters
Go to “Interpolation between parameters“

4. Extrapolation between parameters
Go to “Extrapolation between parameters”

5. Dry run mode
Go to “Dry run mode”

6. Quick debug mode
Go to “Quick debug mode”

testIDEA »

Here we review the example shown
opposite:

During test creation, we wrongly
expected the result
“TEMP_OVER_40” when 40°C is
passed in as the parameter to
evaluateTemperature().

When running the test, the following
will be observed:
The background of the Test Status
area turns red and statistics for the
number of failed tests are displayed.
Additionally, a list of exactly which of
the tests failed is shown on the left
hand side.

5703 Chapter 9 » Handling test cases - Incorrect logical structures

9 HANDLING TEST CASES - WHEN TESTS FAIL

testIDEA »

A left mouse click on the failed test
provides you with more information.
In the provided example the test
failed due to an Assert expression
error.

We expected “TEMP_OVER_40” and
we actually were returned the value
2 during testing which equates to the
value “TEMP_OK” as defined in the
enumeration. Such information helps
us to pinpoint the source of the
issue.

Now it is up to the tester to
determine if the test was incorrectly
created (perhaps because the
specification for the function was
misunderstood), or if the function is
incorrectly programmed. If it is the
latter, a bug report can be submitted.

5803 Chapter 9 » Handling test cases - Incorrect logical structures

9 HANDLING TEST CASES - WHEN TESTS FAIL

testIDEA »

Manually tagging each test with a
unique ID can be automated if
preferred.

In the iTools menu the option “Set
Test IDs“ can be found. This opens a
new dialogue with different options
for configuring automatically
generated test IDs. The format of the
Auto-ID can be defined via the
“Modify“ button.

5903 Chapter 9 » Handling test cases - Set test case ID automatically

9 HANDLING TEST CASES - SET TEST CASE ID AUTOMATICALLY

testIDEA »

Modify opens “Project Properties“ in
the “General” section.

Here the Auto ID Format can be
configured. The ID can be formed
from a combination of fixed text (e.g.
“Project_Randle_”) and elements
that can be referenced from the
source code or the test. For example,
$(_function) will insert the function
name into the Test ID, while
$(_params) will insert the test’s
parameters.

Numerical IDs, such as sequential
numbers ($(_seq)) can also be
generated automatically. Finally,
entries entered into the “Tag” field of
a test can be inserted using the
formatter $(_tags). This can be useful
for grouping test results together.

The Wizard... button provides further
options.

6003 Chapter 9 » Handling test cases - Set test case ID automatically

9 HANDLING TEST CASES - SET TEST CASE ID AUTOMATICALLY

testIDEA »

To fill data between test cases with
interpolated values simply provide
empty fields between the start and
end value, mark the empty fields and
the fields containing the border
values, and click the button
“Interpolate between first and last
cell in selected region of table
column“

The empty fields will then be filled
with the interpolated values.

6103 Chapter 9 » Handling test cases - Interpolation

9 HANDLING TEST CASES - INTERPOLATION

testIDEA »

The interpolated values now have
been filled in.

Note: at the time of writing, numbers
were truncated in testIDEA (up to
and including version 9.17.25).
Future versions of testIDEA will round
down for values < 0.5 and round up
for values >= 0.5.

6203 Chapter 9 » Handling test cases - Interpolation

9 HANDLING TEST CASES - INTERPOLATION

testIDEA »

To extrapolate values, start by
entering two values with which to
start the extrapolation. Select these
and the following fields that are to be
filled with extrapolated values using
the mouse. The first two values
define the value steps for each
consecutive value for the
extrapolation.

Click “Extrapolate” and the selected
region of table column will be filled
with extrapolated values.

6303 Chapter 9 » Handling test cases - Extrapolation

9 HANDLING TEST CASES - EXTRAPOLATION

testIDEA »

The extrapolated values have now
been filled in.

6403 Chapter 9 » Handling test cases - Extrapolation

9 HANDLING TEST CASES - EXTRAPOLATION

testIDEA »

9 HANDLING TEST CASES - DRY RUN MODE

6503 Chapter 9 » Handling test cases - Dry run mode

Dry run mode

This functionality can be used to
record outcome of existing tests
before we modify our source code.
With the test case generator, create a
set of test cases and then use dry run
to record the state of the test and
analyzer results for each test case.

After modifying the target code and
rerunning the tests, the test results
can show us what has changed.

Dry Run

Show
source

Quick
debug

Debug
Mode

Connect to
winIDEA

Refresh

Switch to winIDEA

testIDEA »

9 HANDLING TEST CASES - QUICK DEBUG MODE

6603 Chapter 9 » Handling test cases - Quick debug mode

Main tool bar – Debug options

Generally speaking, these options
enable the test developer to switch
to the winIDEA environment during
test execution on the target, enabling
use of debug features or to analyze
functionality related to the source
code itself.

Quick debug

This functionality runs the selected
test on the target but stops execution
at the function entry point. The test
developer can then execute the
function as desired (using
breakpoints, stepping, etc.) until
completion. Upon reaching the end
of the function, the testIDEA
environment is re-engaged.

Dry Run

Show
source

Quick
debug

Debug
Mode

Connect to
winIDEA

Refresh

Switch to winIDEA

03

testIDEA

SUMMARY

testIDEA »

10 SUMMARY

• Start with a non-executable base test which includes the
minimum required information that is common to all tests

• For further derived tests, the core elements of the base tests are
inherited. All further unique parameters, such as the test’s input
parameter(s) and the expected response value(s) have to be
filled in individually

• The table view helps to quickly create test cases in order to get a
series of test vectors that provide us with the desired test
coverage

03 Chapter 10 » Summary 68

