FIRST STEPS AND TEST CASES

Objectives

At the end of this section, you will be able to

Describe the function of the key interfaces within testIDEA

Create a base test followed by further tests built upon the base test

Execute tests on the chosen microcontroller target

* Create, extend and modify tests using the “table” view

Contents

FIRST STEPS AND TEST CASES

= O 00 N OO U1 & W N =

How the system works

Requirements

Connection to winIDEA

First steps with testIDEA

Setup the testing environment

Create a new base test

Create a derived test

Adding more tests - table of test cases
Handling test cases

Summary

3-4

7-15

16-23
24-34
35-47
48-55
56-66
67-68

THOW THE SYSTEM WORKS

In this training package, we will
mostly assume that the user knows
how to approach testing their
application to fulfil the demands of
their application’s requirement.
However, even if you don’t, you will
pick up some tips and ideas as we
show how certain types of code
constructs in C and C++ can be
tested.

Effective testing can only be achieved

with a clear test specification. This

can simply be a Word or Excel

document if no other formal system Configuration
is in place. covered in

, _ BSCO001
testIDEA is used to actually write the

tests, providing input parameters and
expected outcomes for each function
or method to be tested.

Test specification

/ External test
cases

testIDEA @
winIDEA @

o I
v
o <

testIDEA » 03 Chapter 1 » How the system works

THOW THE SYSTEM WORKS

It is important to note that testIDEA
cannot automatically create tests. It
does, however, through various
means such as importing test vectors
and automation features, help in the
creation of tests.

In order for testIDEA to work, it
needs access to an instantiation of
winIDEA that has a working and
correctly configured workspace, set
up to work with the selected

BlueBox™ hardware and the chosen
microcontroller. The steps required to
achieve this are covered in our
training course

Configuration
covered in
BSCO001

Test specification

/ External test
cases

testIDEA @

winIDEA @
&
\ 4

N

testIDEA » 03 Chapter 1 » How the system works

http://isy.si/bsc0001

2 REQUIREMENTS

Before any tests can be executed, Requirements
target initialization must also occur

i.e. the start-up code prior to A winIDEA workspace and suitable configuration for target
main () must have been executed. development board

This will ensure that the stack is T
e Target initialization must work

allocated. Depending on the target
microcontroller, further code may * Download executable code onto target MCU

* Memory spaces are

configured

MCU peripherals are Before starting with testIDEA

initialized (clocks, ports...)

1. Download application code to target memory

* Global data is initialized . . :
2. Execute run until function main()
Additionally, all functions or methods

to be tested must exist in memory.

Most compilers will optimize away

code that is not used. You may need

to write a simple application example

that specifically calls all the code to

be tested.

testIDEA » 03 Chapter 2 » Requirements 5

3 CONNECTION TO winIDEA

- ™)
When creating a test specification
within testIDEA, function, method W
and variable names must be

o _J

specified.
CONNECTED

winIDEA knows the names of all
functions and variables from the
debug information provided in binary

files (e.g. ELF file) and testIDEA can winIDEA must be able to download the code in order for symbols to be
acquire this information from available. If there is no hardware target available, switching winlDEA to

wmIDEA.to help us W'th "’?“to' demo mode is a suitable work-around.
completion. Therefore it is

convenient to have winlDEA running

when creating tests. If testIDEA was started from winlDEA, then it will automatically

connect to this instance of winIDEA. If we close the winIDEA instance,

The connection status between testIDEA will loose this connection. In such situations you will need to
testIDEA and winIDEA is shown in the
close and restart testIDEA.

bottom left corner of the iISYSTEM
testIDEA window.

testIDEA » 03 Chapter 3 » Connection to winIDEA 6

4 FIRST STEPS WITH testIDEA

Starting testIDEA From within a winIDEA workspace:
The simplest method is to use the
menu option within winIDEA: Test > |w Testldea - winlDEA - [C:\Users\babkinje\Desktop! TestdeaWerkspace\Exercise01\src\exercise_01.cpp]
Launch testIDEA (as displayed right). File Edit View Hardware Debug FLASH Plugins Tools Window Help
~_ Project Workspace [t LaunchiestDEA 1 Jiise 0t.cpp |
If testIDEA has already been started, 3 |« [Filter | e
the menu option from within 5 | = [sketch_no_optimise elf
testIDEA iTools - Connect to winIDEA @ | @ & hodues B _Lounch doqiDEA
enables testIDEA to connect to an AT ﬁ“{"gﬂﬁ; D talLocalvrduino5\packagesiardu :
L . : #- [LA\)\StuartAppDatallocalrduine5\packagesiarduing
eX|Stmg Instance Of win|DEA. By AL StuamappDatallocaldrduing 5\packagesiarduin '
Finally simply pressing the Refresh JLL R StuatappDatailocaldrduino15Ypackagesiarduin
b s hi ill g JLLUStuatAppDatallocalidrduino Sipackagesiarduin =
.UttOﬂ within _tEStlDEA will open a a AL StuamappDatallocaldrduing 5\packagesiarduin &=
dialog box asking whether we want [.\\\\StuaAppData\Local\Arduino5\packagesiarduini __
to connect (covered in later slides). - AL StuartAppDatallocaldrduine 1 S\packagesiarduing 's—
------- A stuartappdatallocalarduino1Sipackagestarduing! s
It is also possible to configure =5 L\ \stuartappdatallocallarduino15\packagesiarduino| ,
testIDEA to connect to winIDEA % ..:I.:_'l;.t.\;tuil]r:\;ppdataﬂucal\arduinu‘lE\packages\arduinm ;:
automatically using iTools = — R 9
=) lexercise_01.cpp:
Preferences —> testIDEA — Connect e i B Types
automatically. 4[4 Functions
= & [Globals

testIDEA » 03 Chapter 4 » First steps with testIDEA 7

4 FIRST STEPS WITH testIDEA

When we first open testIDEA for a
workspace for which no test
specification has been created, we
will be asked if we want to create an
*iYAML file by default. It is
recommended to accept this default
setting as the testIDEA workspace
will be stored in the correct folder
(same as winlDEA workspace)
automatically.

If this window doesn’t appear, it
might be that there is already an
existing testIDEA workspace or that it
is hidden in the background of
winlDEA window.

Test specification file

Default test specification file
'‘ChUsers\babkinjeDesktop\TestldeaWorkspace\B5C0002\ Testldea.iyaml' does not
exist.

Do you want to create it?

0K D:‘J T

testIDEA » 03 Chapter 4 » First steps with testIDEA

4 FIRST STEPS WITH testIDEA

testIDEA user interface

Once testIDEA has been started, you
will be confronted by the following
user interface.

The following slides guide you
through the various interface areas
and the key menu options.

Once this has been covered, you will
be ready to start creating your first
tests.

ISYSTEM testiDEA
File Edit Test iTools Help

95 Outline 52

dew = 0O

HEEHRILBRIVORA I &SRB 0y

(T Testldea.iyaml X{W

¥ Meta
¥ Function
J Persistent variables
¥ Variables
¥ Pre-conditions
- Expected
J Stubs
J User Stubs
J Test Points
v i Analyzer
v b Coverage
- Statistics
v & Profiler
¥ Codeareas
¥ Data areas
¥ Trace
¥ HIL
J Seripts
J- Optiens
J Dryrun
J& Diagrams

Function:

Ret. val. name:

Test exec. timeout:

Core ID:

Form | Table|

@ Test Status &2

D Function/la...

v
>

DISCONNECTED

testIDEA » 03 Chapter 4 » First steps with testIDEA

STANDARD

4 FIRST STEPS WITH testIDEA

testIDEA user interface

Outline

This view contains a list of all test
cases. By clicking a test case in the
tree, its content is displayed in Test
Case Editor area. The context menu
of the Outline view contains options
for creating and deleting test cases.

ISYSTEM testiDEA
File Edit Test iTools Help

HEEHRILBRIVORA I &SRB 0y

95 Qutline 52

dew = 0O

Outline

(T Testldea.iyaml X{W

¥ Meta
¥ Function
J Persistent variables
¥ Variables
¥ Pre-conditions
- Expected
J Stubs
J User Stubs
J Test Points
v i Analyzer
v b Coverage
- Statistics
v & Profiler
¥ Codeareas
¥ Data areas
¥ Trace
¥ HIL
J Seripts
J- Optiens
J Dryrun
J& Diagrams

Function:

Ret. val. name:

Test exec. timeout:

Core ID:

Form | Table|

@ Test Status &2

D Function/la...

v
>

DISCONNECTED

testIDEA » 03 Chapter 4 » First steps with testIDEA

STANDARD

10

4 FIRST STEPS WITH testIDEA

testIDEA user interface

Test Case Editor Area

This area contains editors with
controls for viewing and modifying a
test case.

ISYSTEM testDEA - %

File Edit Test iTools Help

FELERARBRVDRAFES R B e Quick Access|
— —

8% Outline £2 He = O YT Testideaiyaml 52 \ =5

Outline

¥ Meta
¥ Function
J Persistent variables
¥ Variables
¥ Pre-conditions
- Expected
J Stubs
J User Stubs
J Test Points
v i Analyzer
v b Coverage
- Statistics
v & Profiler
¥ Codeareas
¥ Data areas
¥ Trace
¥ HIL
J Seripts
J- Optiens
J Dryrun
J& Diagrams

Function:

Ret. val. name:

Test Case Editor Area

Test exec. timeout:

Core ID:

Form | Table

@ Test Status &2

D Function/la...

v
>

DISCONNECTED

testIDEA » 03 Chapter 4 » First steps with testIDEA

STANDARD

11

4 FIRST STEPS WITH testIDEA

testIDEA user interface

Test Status View

This view displays status messages.
Summaries of test results and error
messages during editing are
displayed here.

ISYSTEM testiDEA

- X
File Edit Test iTools Help
FELERARBRVDRAFES R B e Quick Access|
— e
8% Outline £2 dem = O |[iT Testideaiyaml 52 \ =5
¥ Meta

¥ Function
. J Persistent variables
Outllne e Variables
¥ Pre-conditions
- Expected
J Stubs
J User Stubs
J Test Points
v i Analyzer
v b Coverage
- Statistics
v & Profiler
¥ Codeareas
¥ Data areas
¥ Trace
¥ HIL
J Seripts
J- Optiens
J Dryrun
J& Diagrams

Function:

o e Test Case Editor Area

Test exec. timeout: h ‘ms

Core ID:

Form | Table

@ Test Status &2

D Function/la...

Message

Test Status View

<

v
>

DISCONNECTED

STANDARD

testIDEA » 03 Chapter 4 » First steps with testIDEA

12

4 FIRST STEPS WITH testIDEA

Main menu bar
File menu

The file menu contains the options to
save *.iYAML files, import and export
options and the option to change
testIDEA settings via the “Properties”
dialogue.

Edit menu

The edit menu offers the common

edit options, such as copy and paste,
as well as some testIDEA specific
paste options.

F'ﬁ Edit Test iTeeols Help

&
bk

e

k' L.

Mew
Open
Open Recent

Close

Close All

Save
Save All
Save As

Export
Import

Properties

Exit

Ctrl+ O

Ctrl+W
Ctrl+Shift+W

Ctrl+5
Ctrl+Shift+5

Alt+Enter

Test iTools Help

Select All

Paste As Derived
Paste And Owverwrite

testIDEA » 03 Chapter 4 » First steps with testIDEA

Ctrl+ £
Ctrl+Y

Ctrl+ X
Ctrl+C
Ctrl+V

Ctrl+ A

Ctrl+D
Ctrl+ Alt+V

13

4 FIRST STEPS WITH testIDEA

Main menu bar
Test menu

Via the test menu new tests can be
created. Additionally, advanced
grouping of tests can also be
implemented. Further options allow
all or selected tests to be executed,
based upon selection or filter
settings. Test reports can also be
configured and created here.

iTools menu

Via this menu, the connection to
winIDEA and the project’s symbols
can be (re)established. Further
advanced options are also offered
here, along with access to testIDEA’s
preferences.

Test

WOBRW o

iToocls Help
Mew Test ...
Mew Derived Test ...

Mew Test From Template ...

Mew Group ..

Mew Sub-Group ...
Init Target

Run All Tests

Run Selected Tests

Run Selected And Derived
Run with Filter

Run Failed Tests

Remove Empty Sections
Disable Analyzer
Keep Test Results

Configure Test Report ...
Save Test Report ...

Configuraticn...

iTools™ Help
L7 Connect to winlDEA (hold SHIFT for dialeg)
n{}{h Refresh
Rename ...
Set Test IDs
Set Analyzer File Names
Ctrl+|
Verify Symbols
Ctrl+R
Ctrl+ Shift+ 0 Eﬂ Create Groups ...
Ctrl+T % Delete Empty Groups
f: Generate Test Cases ...
5 Optimize Test Vectors
Generate Test Script ...
&L Script Extensions Wizard ...
Reset test view
Preferences

testIDEA » 03 Chapter 4 » First steps with testIDEA 14

4 FIRST STEPS WITH testIDEA

Main tool bar

The main tool bar offers some New * iYAML file Initialize Target Run with filter
common file and edit options as well
as various options for test execution,
such as the option to run only Open*.iYAML file Run selected
selected test vectors. These options | and derived
can be used to acquire quick test

|
results or a merged coverage ‘E (& @| G_g- ' (;J n %pﬁ }:&l ‘%‘_| -i].:=-:} %_ﬁ;l [N ,:{}-:}';.

measurement for a select number of

specific test vectors. | | | |
Furthermore, there are a few buttons Save Cut Paste Ru”n
for debug options that allow the -
code being tested to be debugged Run selected
during the execution of the test. Save all Copy
These options will be explained at
the end of this unit. N N A Y,
Y Y Y !
File Edit Code execution Test Debug Options
options options options (covered later)

testIDEA » 03 Chapter 4 » First steps with testIDEA 15

5 SETUP THE TESTING ENVIRONMENT

Before execution of any tests, it is
necessary to define some settings for
the testing environment. This can be
undertaken via the “Properties”
option in the “File” menu.

File Edit Test iTocls Help

F MNew

(= Open Ctrl+ 0
Open Recent H
Close Ctrl+W Skipping Setup Options
Close All Ctrl+5Shift+W

Save Ctrl+5

@ Save All Ctrl+5Shift+5

Bt | Properties h

It is also possible to run test vectors without manually configuring the following setup
options. In this case a window, suggesting use of the default settings, will appear when
you start running your test vectors for the first time. It is recommended to accept the
default settings if you did not make any changes in the “Properties” dialogue.

testIDEA » 03 Chapter 5 » Setup the testing environment 16

5 SETUP THE TESTING ENVIRONMENT

In the “General” settings, we can link
the currently open winIDEA
workspace to the testIDEA iYAML test
specification file. This ensures that
the test specification is linked to the
winIDEA workspace to which it
belongs whenever it is opened.

It is recommended to create the
connection between winIDEA and
testIDEA by using the “To test spec.
button. This ensures that the

77

workspace with which testIDEA was
started is associated with the tests.

Project properties

| type filker text |

| General I
Initialization sequence

Multicore configuration
Run cenfiguration

Scripts

Stack usage

Target Initialization Before |
Tools configuration
winlDEA evaluator

O X
Project properties e v ow
Settings on this page define test envirenment.
They are used for test execution, and are saved to project file.
Waorkspace file (cmd. line): |C:1Users‘\hahlcinje‘x[}5ktap‘ﬂ5tldeaWarkspace\Exerciseﬂﬁhscﬂ]]Z-l]‘l jrf To test spec.

Waorkspace file (test spec): |

Default ret. val. name: |

Copies winlDEA workspace path given as testiDEA combr\;'land line
parameter to test specification field below.

is made to the most recently used instance of winlDEA.

If both Address and Port fields below are empty, then connection

Address: |

Port: |

testIDEA » 03 Chapter 5 » Setup the testing environment 17

5 SETUP THE TESTING ENVIRONMENT

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

“Always run init sequence
before run” should be checked

Project properties

| type filter text

General

Initialization sequence
Multicere configuration
Run configuration

Scripts

Stack usage

Target Initialization Before |
Tools configuration
winlDEA evaluator

O x

Initialization sequence Sv vy w

Settings on this page define target initialization steps. They are used for test execution, and are saved to project file.
This page can be accessed with commands 'File | Properties' or 'Test | Init sequence’.

[+ Always run init sequence before run (:i)

Init sequence

Operations selected in this group are executed in the same order as they appear below.

®
L coreld params 2
0

=
®
S0zt " reset !
' _ reset_ v
reset
connectToCore

reset

run
delAllBreakpoints
callTargetFunction
callScriptFunction

leadSymbelsOnly
waitUntilStopped v
< >
[Check target state before run [Verify symbols before run
[] Disable interrupts
< 5 | Restore Defaults | | Apply
[ok || cancel

testIDEA » 03 Chapter 5 » Setup the testing environment

18

5 SETUP THE TESTING ENVIRONMENT

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

Click on the plus symbol
and select a reset action

Project properties

| type filter text

General

Initialization sequence
Multicere configuration
Run configuration

Scripts

Stack usage

Target Initialization Before |
Tools configuration
winlDEA evaluator

O x

Initialization sequence Sv vy w

Settings on this page define target initialization steps. They are used for test execution, and are saved to project file.
This page can be accessed with commands 'File | Properties' or 'Test | Init sequence’.

[+ Always run init sequence before run (@

Init sequence

Operations selected in this group are executed in the same order as they appear below.

®
L coreld params 2
0

=
®
S0 " reset !
2 _ reset_ v
reset
connectToCore

reset

run
delAllBreakpoints
callTargetFunction
callScriptFunction

leadSymbelsOnly
waitUntilStopped v
< >
[Check target state before run [Verify symbols before run
[] Disable interrupts
< 5 | Restore Defaults | | Apply
[ok || cancel

testIDEA » 03 Chapter 5 » Setup the testing environment

19

5 SETUP THE TESTING ENVIRONMENT

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

Modify the next action to be a
download action

Project properties

| type filter text

General

Initialization sequence
Multicere configuration
Run configuration

Scripts

Stack usage

Target Initialization Before |
Tools configuration
winlDEA evaluator

O x

Initialization sequence

<::lvl::>vv

Settings on this page define target initialization steps. They are used for test execution, and are saved to project file.
This page can be accessed with commands 'File | Properties' or 'Test | Init sequence’.

[+ Always run init sequence before run (@

Init sequence

Operations selected in this group are executed in the same order as they appear below.

®
L coreld params 2
+
ﬂ [

S0 " reset !
2 _reset v
reset

connectToCaore
reset

run
delAllBreakpoints
callTargetFunction
callScriptFunction

leadSymbelsOnly
waitUntilStopped v
< >
[Check target state before run [Verify symbols before run
[] Disable interrupts
< 5 | Restore Defaults | | Apply
[ok || cancel

testIDEA » 03 Chapter 5 » Setup the testing environment

20

5 SETUP THE TESTING ENVIRONMENT

Set up the initialization sequence for
the MCU. Typically the following
process works in almost every case:

Add another action to delete
all breakpoints —
delAllBreakpoints

Project properties

| type filter text

General

Initialization sequence
Multicore configuration
Run cenfiguration

Scripts

Stack usage

Target Initialization Before |
Tools configuration
winlDEA evaluator

O x

Initialization sequence SLw v ow

Settings on this page define target initialization steps. They are used for test execution, and are saved to project file.
This page can be accessed with commands 'File | Properties’ or "Test | Init sequence’.

[~] Always run init sequence before run (@

Init sequence

Operations selected in this group are executed in the same order as they appear below.

@ coreld params * =
T
0 %

! " reset !

' 2) 'downloadl

_ reset e |

4 Hi4 ¥

E HE +

reset

connectToCore

download

reset
run
callTargetFuE'on

callScriptFunction v
leadSymbolsOnly =
waitUntilStepped

[+] Check target state before run [] Verify symbols befare run

[] Disable interrupts

| Restore Defaults | | Apply

[ok | cancel

testIDEA » 03 Chapter 5 » Setup the testing environment

21

5 SETUP THE TESTING ENVIRONMENT

The last action is to execute
the code on the target (— run
action) but only up to the
entry of themain () function
(‘main’ as params. means run
until main).

Typically this is all that is required
since, when the processor reaches
the main function, the stack will have
been initialized, a requirement for
execution of original binary code tests

on the target.

If peripherals on the microcontroller also
need to be instantiated prior to executing
the tests, you may wish to name an
alternate function to halt at here.

Project properties

| type filter text

General

Initialization sequence
Multicore configuration
Run cenfiguration

Scripts

Stack usage

Target Initialization Before |
Tools configuration
winlDEA evaluator

O x

Initialization sequence SLw v ow

Settings on this page define target initialization steps. They are used for test execution, and are saved to project file.
This page can be accessed with commands 'File | Properties’ or "Test | Init sequence’.

[~] Always run init sequence before run

Init sequence

Operations selected in this group are executed in the same order as they appear below.

@ coreld params * =
T
0 %

! " reset !

" download

delAllBreakpaints
i " run ! main @
ar

[‘}‘Click or press Enter to add new element to the table.

4 k4 K4k

0
1
2

X +|X + (X +

[+] Check target state before run [] Verify symbols befare run

[] Disable interrupts

| Restore Defaults | | Apply |

[ok || canca |

testIDEA » 03 Chapter 5 » Setup the testing environment

22

5 SETUP THE TESTING ENVIRONMENT

Project properties a x

Setup run configuration: | type filter text Run configuration ER TR

General
; 3 . Settings on this page define configuration for test execution. They are are saved to project file,

|t IS recommen d ed to start by settl ng Inrtla.hzatmn se.quenc.e This page can be accessed with commands 'File | Properties' or 'Test | Configuration'.

the test execution timeout to Multicore configuration

5000 | Run configuration | || Test execution timeout: | 5000 1 {ms |

ms. Scripts If defined and greater than 0, then test is terminated after this amount of milliseconds.
Stack usage Type This setting is not used if timeout in test case is specified,
Target Initialization Before | (® Keep winlDEA setting
. T?OII;E:nflglura:mn () Use hardware breakpoints
. win evaluator
A 5 second timeout means: O) Use software breakpoints
N th e event th at th e CO d e on th e () Use hardware breakpoints during target init, software breakpoints during testing

target microcontroller hangs
unexpectedly, perhaps it gets stuck in
an infinite loop, after 5 seconds it will

time out and provide an error, rather
than hanging indefinitely.

| Restore Defauhs| | Apply |

[ok | canca |

testIDEA » 03 Chapter 5 » Setup the testing environment

6 CREATE A NEW BASE TEST - THE APPLICATION

Take a look at the following source
code:

The function that we want to create
unit tests for is named
evaluateTemperature(), a simple
function that accepts a single
parameter by value and delivers a
single return parameter by value. The
return value is of type Thermostat,
and is limited to four possible values.

During code development it was
decided to create a new data type
using enum rather than define the
values using #define. This conscious
decision simplifies test creation since
testIDEA will find the Thermostat
type automatically in the binary file’s
symbols.

enum Thermostat {
TEMP ERROR,
TEMP_UNDER 15,
TEMP OK,
TEMP_OVER_40

/‘\
—50
— 45
— 40
—35
— 30
— 25
— 20
— 15

By sticking to an agreed coding standard (such as using an enum rather than

OK

Thermostat thermostateControl =
TEMP_ERROR;
Thermostat evaluateTemperature (

signed int temperature)

if (temperature < 15) {
returnValue = TEMP UNDER 15;
} else if (temperature <= 40) {
returnValue = TEMP OK;
} else {
returnValue = TEMP OVER 40;
}

return returnValue;

#define as seen here), the resulting code becomes easier to debug and

maintain.

testIDEA » 03 Chapter 6 » Create a new base test - The application

24

6 CREATE A NEW BASE TEST - CONCEPT

Set up of the testing environment

We will start by creating a base test
which we do not want to actually
execute. This is a template for the
tests we wish to create.

We will then derive further tests
from the base test.

The base test can be imagined as a
template containing all of the key
information for testing a C function
or a C++ method that is common to
all of the tests. Anything that is
specific to each individual test (such
as input parameters or return values)
is left out.

Base test

Derived
test 1

Derived
test 2

Derived
test 3

Template
— common elements

individual

individual

individual

individual

e.g. Function name,
function description,
code-coverage...

e.g. Parameters,
expected values, ...

testIDEA » 03 Chapter 6 » Create a new base test - Concept 25

6 CREATE A NEW BASE TEST

A new base test is created by using
the “Test” menu in the main menu
bar and selecting “New Test...”

File Edit = Test

w e N

0= Outline

iITools Help
Mew Derived Test ... New Test .
Mew Test From Template ...
Mew Group ...
Mew Sub-Group ...
Init Target Ctrl+|
Fun All Tests Ctrl+R
Run Selected Tests Ctrl+5hift+C
Run Selected And Derved Ctrl+T

Run with Filter
Run Failed Tests

testIDEA » 03 Chapter 6 » Create a new base test

L e

26

6 CREATE A NEW BASE TEST

When we first click on the function

. . %] Mew test case wizard O >
drop down menu there is nothing _ °
. . . New test case wizard Y
avallable n terms Of funCtlon Names Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L
for testing. This is because this new .
instantiation of testing isn’t currently Scope O Unit O System @ Default (Uit [Auto generate test ID
connected to a winIDEA project. Core D .
Clicking on the Refresh button will funcion: | |
. . . unction: i
establish this connection and all the @
symbol information from the binary | Refresh globals. - \-/
file will be transferred to testIDEA. Parameters: | Press ’Fhls button to get thv.? latest list of iterns from winlDEA.
Press it also after recompiling the changed source code,

Using the Refresh Button will also
change the state of testIDEA

| EVALUATION

testIDEA » 03 Chapter 6 » Create a new base test 27

6 CREATE A NEW BASE TEST

When we now open the drop-
down menu, all of the functions
that are included in the symbols
of the associated binary file are
listed. It is now possible to
select the function called
evaluateTemperature() from
this list.

%] Mew test case wizard

MNew test case wizard

Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded.

s

Scope: (O Unit () System (@) Default (Unit)

Core ID: w

[~] Auto generate test ID

Function: |EvaluateTemperature (1)
N

/] [#][&]

| Mame of a C function, which we want to test. li

| Thermostat (long temperature]

Parameters: |

Expected result

(®) Default expression for function return value test

[sys v ==

() Custom expression and function return value name
Expression:

Ret. val. name:

Finish

Cancel

testIDEA » 03 Chapter 6 » Create a new base test

28

6 CREATE A NEW BASE TEST

The return type and the type
and variables associated with

the parameter list are then
automatically filled in the field
below as this information has

been extracted from the binary
file.

%] Mew test case wizard

d >
.]
New test case wizard Y
Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L
>
Scope: (O Unit () System (@) Default (Unit) [~] Auto generate test ID
Core Dt w

Function: |EvaluateTemperature (1) v|
N

| Mame of a C function, which we want to test. li
) Thermostat (long temperature]

Parameters: |

Expected result

(®) Default expression for function return value test

dsys v ==

() Custom expression and function return value name
Expression:

Ret. val. name:

<Back | MNet> [Finsh | Cancel

testIDEA » 03 Chapter 6 » Create a new base test 29

6 CREATE A NEW BASE TEST

This is all we have to do for this
particular test because the only
common element for further
derived unit tests will be the
name of the function.

The parameter and the
expected return value will be
test dependent, so we leave
these fields empty for now.

%] Mew test case wizard O >
.]

New test case wizard Y

Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L

L

Scope: (O Unit () System (@) Default (Unit)

Core ID: w

[~] Auto generate test ID

Function: |EvaluateTemperature (1)
N

/] [#][&]

| Mame of a C function, which we want to test. li
) Thermostat (long temperature]

Parameters: | (3)

Expected result

(®) Default expression for ien return value test

[sys v ==

() Custom expression and function return value name
Expression:

Ret. val. name:

Finish

Cancel

testIDEA » 03 Chapter 6 » Create a new base test

30

6 CREATE A NEW BASE TEST

Click “Finish” and you will have

created your first base test.

%] Mew test case wizard O >
.]
MNew test case wizard Y
Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L
>
Scope: (O Unit () System (@) Default (Unit) [~] Auto generate test ID
Core Dt w

| Mame of a C function, which we want to test. li
) Thermostat (long temperature]

Function: |EvaluateTemperature (1) v|
2. =

Parameters: | (3) |

Expected result

(®) Default expression for f ien return value test

Jisys.rv == 3)

() Custom expression and function return value name

Expression:

Ret. val. name:

(4)

\ &)
<Back | MNet> [Finish 7 Cancel

testIDEA » 03 Chapter 6 » Create a new base test 31

6 CREATE A NEW BASE TEST

The Meta form:

We will now clear the “Execute” box
in the “Meta” section as we do not
want to execute this base test, as
there are no parameters and no
expected return values in this test
template.

iT *Meu.iyaml EX]

[Meta
[= Function
J& Persistent variables
J& Variables
J& Pre-conditions
J& Expected
& Stubs
J& User Stubs
& Test Points
~ JE Analyzer
v J& Coverage
& Statistics
w J& Profiler
J& Codeareas
J&- Data areas
& Trace
& HIL
& Scripts
J& Options

Execute |

Check this box to enable the test. If unchecked, test will not be executed
Scope: regardless of filters. It should be unchecked for test specifications, which

[®] Inherit

|— are used as base for derived exceptions only, and are not intended for execution.
I

|i [®] Inherit

] Inherit | []View/ Edit

Description:

v
>

Result comment:

~
This text refers te specific

__racubte and ranark anbe

test run. It is stored to

Form T;ble|

Execute

Check this box to enable the test. If unchecked, test will not be executed
regardless of filters. It should be unchecked for test specifications, which
are used as base for derived exceptions only, and are not intended for execution.

testIDEA » 03 Chapter 6 » Create a new base test

32

6 CREATE A NEW BASE TEST

The Function form: T *Newiyam ggL

Looking at the function form, we can b Meta "+ Function |
i ’ ; uncticn W] Inherit
check that the inputs from the prior Inherit

- Persistent variables
Variables Function: i| evaluateTemperature

steps are correctly displayed.

Pre-conditicns I}
Expected
Stubs
User Stubs (W] Inherit
Test Points
w = Analyzer

| Thermostat (long temperature]

TORE R R K

Pararns: |

w Ji- Coverage _
& Statistics Ret. val. name: | '
w J& Profiler
[Code areas
& Data areas
Trace _
'3 ﬁ’”_ [®] Inherit
¥ Scripts Test exec.timeaut| ms
& Options

Forn: T;ble|

=11 1

testIDEA » 03 Chapter 6 » Create a new base test 33

6 CREATE A NEW BASE TEST

After completing the first base test it
is recommended to save the file.

testIDEA » 03 Chapter 6 » Create a new base test

34

/ CREATE A DERIVED TEST - CONCEPT

Derived tests:

* Tests are organized hierarchically
in a tree structure

* Tests at the top level are called
base tests (parent) while their
children are called derived tests

Derived tests can inherit traits
from lower level tests

Derived tests may override settings of
the base test if required.

Inherit

Base test

Derived

test 1

Derived
test 2

Derived
test 3

testIDEA » 03 Chapter 7 » Create a derived test - Concept

35

/ CREATE A DERIVED TEST - HEREDITY

Basically, anything that exists in a
base test will also be copied to the
derived test.

If a field was filled with information,
it appears filled in the derived test.

If a field was unfilled, it remains
unfilled in the derived test.

On the right we have an example of a
base test (top) and the derived test
(bottom). The derived test has

inherited the function ECLIB_Sqr_16
and, as a result, it is grayed out (in
blue) to protect it from change.

T bsc0002-03-test-vectors-im ported-and-persistent.iyaml 2

Meta

Function
Persistent variables
Variables
Pre-conditions
Expected

Stubs

User Stubs

Test Points
Analyzer

CTEEERERTET V7

Base Test |
[®] Inherit !
Function: || ECLIB_Sqr_16 v
| AN |
[Jinherit * \
Params: | \ |i
AN

[= Coverage
J& Statistics

iT *bscCKIE—CB—test—vecbors-imported-and-persistent.iyamlh\

<

e Profiler
& Code area
& Data areas

- Trace

HIL

Scripts

Options

Dry run

TR W R

Diagrams

Form Table|

[F Meta
& Function
& Persistent variables
'B‘lgl Variables
& Pre-conditions
& Expected
- Stubs
e User Stubs
& Test Points
v [# Analyzer
v ¥ Coverage
'B‘f' Statistics
v [# Profiler
L Code areas
L Data areas
L€ Trace
HIL
Scripts
Options
Dry run
Diagrams

EEEET

Derived Test |

Test exec. timeout:

Core ID:

[®] Inherit '

[®] Inherit '
Function: i| ECLIB_Sqr_16 o E
] Inherit
Params: | |i I:
Ret. val. name: :
] Inherit

testIDEA » 03 Chapter 7 » Create a derived test - Heredity

36

/ CREATE A DERIVED TEST - HEREDITY

As there were no parameters entered
into the base test, there are no
parameters in the derived test. The
related field remains white and it is
possible to enter values.

T bsc0002-03-test-vectors-im ported-and-persistent.iyaml 2

Meta

Function
Persistent variables
Variables
Pre-conditions
Expected

Stubs

User Stubs

Test Points
Analyzer

Base Test |
[®] Inherit !
Function: || ECLIB_Sqr_16 v
| |
[Jinherit *
Params: | |i

CTEEERERTET V7

[= Coverage
J& Statistics

T “bsc0002-03-test-vecto W yaml &3

<

e Profiler
& Code area
& Data areas
- Trace
HIL
Scripts
Options
Dry run
Diagrams

TR W R

Form Table|

[F Meta
& Function
& Persistent variables
'B‘lgl Variables
& Pre-conditions
& Expected
- Stubs
e User Stubs
& Test Points
v [# Analyzer
v ¥ Coverage
'B‘f' Statistics
v [# Profiler
L Code areas
L Data areas
L€ Trace
HIL
Scripts
Options
Dry run
Diagrams

EEEET

[®] Inherit '

Derived Test |

NENE

W

Function: ECLIE_Sqr_16
AN
] Inherit
Params: |
Ret. val. name: :
] Inherit
Test exec. timeout: |
[®] Inherit '

Core ID:

testIDEA » 03 Chapter 7 » Create a derived test - Heredity 37

/ CREATE A DERIVED TEST - HEREDITY

The Inherit setting refers to the
elements the derived test inherits
from the test from which it is derived
(in this case, our base test).

In both cases, the Inherit setting is
set to intermediate in the derived
test, the default setting. This is
indicated by the black check box. The
intermediate setting indicates that
the field will inherit entries from the
test from which is was derived,
protecting them from change, unless
the field was empty, leaving the field
open for editing.

T bsc0002-03-test-vectors-im ported-and-persistent.iyaml 2

- Mt Base Test
I Function [®] Inherit
Persistent variables :
i Variables Function: i| ECLIB 5qr_16 v|I
J Pre-conditions
& Expected | |
& Stubs
J& User Stubs [1inherit
& Test Points i
v [+ Analyzer HEs | |
v [= Coverage
Jo Statistics T “bsc0002-03-test-vectors-im ported-and-persistentiyaml &2 .
~ = Profiler 2 Meta Der|VEd TeSt
& Code area 2 Function] Inherit |
Jo- Data areas J Persistent variables ;
[Trace = Variables AITECTTE | - E
F H”j & Pre-conditions
il Y '
¥ Dg o - Stubs .
- Diagrams $ Leer Stgbs (8 Inherit *
& Test Points i
v [# Analyzer R | | I:
v ¥ Coverage
'B‘f' Statistics Ret. val. name: i
v [# Profiler
¥ Codeareas
Form Tahle| ¥ Data areas
=l
3 ﬁLTrace] Inherit
B Scripts Test Euec.timeou1:|
& Options
'E- |:]r_|||I run Elnheril :
J Diagrams Core ID:

testIDEA » 03 Chapter 7 » Create a derived test - Heredity 38

/ CREATE A DERIVED TEST - HEREDITY

The Inherit setting can be set to:

* Unchecked: to explicitly not inherit
entries from the base test.

Intermediate: inherit and protect
entries derived from the base test,
if there; otherwise leave empty.

Checked: explicitly inherit the
setting from the base test.

Always develop the base test using
the lowest common denominator of
settings. Exceptions to the common
denominator can then be edited by
hand for the few outliers in your
derived tests.

T bsc0002-03-test-vectors-im ported-and-persistent.iyaml 2

Meta

Function
Persistent variables
Variables
Pre-conditions
Expected

Stubs

User Stubs

Test Points
Analyzer

CTEEERERTET V7

Base Test |
[®] Inherit !
Function: || ECLIB_Sqr_16 v
| |
[Jinherit *
Params: | |i

[= Coverage
J& Statistics

T “bsc0002-03-test-vectors-im ported-and-persistentiyaml &2

<

e Profiler
& Code area
& Data areas
- Trace
HIL
Scripts
Options
Dry run
Diagrams

TR W R

Form Table|

[F Meta
& Function
& Persistent variables
'B‘lgl Variables
& Pre-conditions
& Expected
- Stubs
e User Stubs
& Test Points
v [# Analyzer
v ¥ Coverage
'B‘f' Statistics
v [# Profiler
L Code areas
L Data areas
L€ Trace
HIL
Scripts
Options
Dry run
Diagrams

EEEET

W

Derived Test |
[®] Inherit '
Function: i| ECLIB_Sqr_16 o E
] Inherit
Params: |
Ret. val. name: :
] Inherit
Test exec. timeout: |
[®] Inherit '
Core ID:

testIDEA » 03 Chapter 7 » Create a derived test - Heredity

39

3

/ CREATE A DERIVED TEST - FIND PARAMETERS AND EXPECTED VALUES

if (temperature < 15) { c..

returnValue = TEMP UNDER 15; } else {
We want to test . } else if (temperature <= 40) { returnValue = TEMP OVER 40;
evaluateTermperature() using a returnvValue = TEMP OK; }

boundary testing strategy e return returnValue;
(boundaries of the data types are not

considered in this example):

signed int temperature = 14
signed int temperature = 15 15 40
signed int temperature = 16

signed int temperature = 39
Class

Class Class

signed int temperature = 40
TEMP_UNDER_15 TEMP_OK

TEMP_OVER_40

signed int temperature = 41

The created base test will be used to \ 2
create derived tests.
Set of values Set of values
around around
boundary: boundary:
14, 15, 16 39, 40, 41

testIDEA » 03 Chapter 7 » Create a derived test - Find parameters and expected values 40

/ CREATE A DERIVED TEST

To create a new derived test start by
selecting the base test we created
with the mouse. Then open the
context menu (right mouse click) in
the Outline from the base test and
select “New Derived Test..."

The New derived test case wizard will
open.

:E Cutline &3 l ey g = B T *Testidea.i
t:' nr: E"lrﬂll.lﬂtETﬂ'mﬂnr:ﬂllrn |
Mew Test ...
Mew Test From Tempge
Mew Group ... Mew Derrved Test ...

testIDEA » 03 Chapter 7 » Create a derived test

41

/ CREATE A DERIVED TEST

We do not need to enter

%] Mew derived test case wizard

d >

anything into the function field, _ °
. . . New test case wizard °
because thls teSt lnherlts the Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L
information from the base test. 4

Scope: (O Unit () System (@) Default (Unit) [~] Auto generate test ID

Core ID: w

— (1) -
| |

Parameters: | 19 1 |

|Function parameters, for example: 10, 30, 'c'i

Expected result
() Default expression for function return value test

[sys v ==

(®) Custom expression and function return value name

Expression: | |

Ret. val. name: | |

<Back | MNeis [Fmsh | Cancel

testIDEA » 03 Chapter 7 » Create a derived test 42

/ CREATE A DERIVED TEST

%] Mew derived test case wizard O >
MNew test case wizard ? Y
Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. :
Scope: (O Unit () System (@) Default (Unit) [~] Auto generate test ID
We can now add a test input Core ID: v
parameter; in this example we Function: | (1] <]
choose 15°C as a parameter | |
value. 7
Parameters: | 19 (2) 1 |
|Function parameters, for example: 10, 30, 'c'i
Expected result
() Default expression for function return value test
dsys v ==
(®) Custom expression and function return value name
Expression: | |
Ret. val. name: | |
<Back | MNeis [Fmsh | Cancel

testIDEA » 03 Chapter 7 » Create a derived test 43

/ CREATE A DERIVED TEST

Next we have to define the
expected return value for this
test parameter. In the case of a
15°C input value we expect

%] Mew derived test case wizard O >
.]

New test case wizard Y

Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L

L

TEMP_OK as the return value as

(O Unit () System (@) Default (Unit)

[~] Auto generate test ID

o

Scope:
it lies in the 15° to 40° range Core ID:
programmed in the code. Funcion: |

/] [#][]

_isys_rv is a default return value

variable that testIDEA creates for |

Parameters: | 15

us in order to capture any return

(2] |

value that results from tested

Expected result
functions.

(®) Default expression for function reiuWe test

In the Expected result field we sysv ==

can enter any valid C/C++
evaluation expression using test
or target variables, registers, or
I/O module input ports.

Expression:

Ret. val. name:

TEMP_OK

(C) Custom expression and function return va in section 'Expected’, For example, if you enter:

3\

nter expected function return value, This value will be used to autornatically generate expression '_isys_rv == <valuex'

10
expression '_isys_rv == 10" will be automatically generated. This feature can only be used for
scalar types (char, int, ...). For complex types specify Ret. val. name and expression below.
Additicnal expressions can later be entered in section 'Variables'.

The returned value is then
verified against this expected

<Back | MNeis [Fmsh | Cancel

value or expression.

testIDEA » 03 Chapter 7 » Create a derived test L4

/ CREATE A DERIVED TEST

Clicking “Finish” will create

%] Mew derived test case wizard O >
your first derived test _ °
New test case wizard Y
Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L
>
Scope: (O Unit () System (@) Default (Unit) [~] Auto generate test ID

Core ID: w

functor: | (1)]
| |
Parameters: | 15 (2) |

Expected result
(®) Default expression for function reiuWe test

TEMP_OK 3 \ |

)) nter expected function return value, This value will be used to autornatically generate expression '_isys_rv == <valuex'
(C) Custom expression and function return va in section 'Expected’, For example, if you enter:
10
expression '_isys_rv == 10" will be automatically generated. This feature can only be used for
scalar types (char, int, ...). For complex types specify Ret. val. name and expression below.
Additicnal expressions can later be entered in section 'Variables'.

[sys v ==

Expression:

Ret. val. name:

Save some time typing by simply
copying the return value text from

the source code in the winlDEA editor @
window and pasting it into the <Back | MNed> | [Finish 7 Cancel

“Expected result” field.

testIDEA » 03 Chapter 7 » Create a derived test 45

/ CREATE A DERIVED TEST - FUNCTION DATA

In the test case’s options list you can
now see that some of the arrows
turned blue. These blue arrows
indicate options with values entered
into them. The blue arrow with the
small backward symbol indicates
some of the fields contain inherited
elements.

Selecting the Function form, we see
that the Function field and other blue
colored elements are inherited

entries, whilst the Parameter field is
unique to this test case.

EE Meta
' Function

J& Variables

Ji= Pre-conditions

J= Persistent variables

IF Meta A

¥ Function

- Persistent variables

& Variables

& Pre-conditions

[Expected

¥ Stubs

¥ User Stubs

- Test Points %

w & Analyzer b

w J- Coverage
¥ Statistics Ret. val. name:

w i Profiler

Function:

[®] Inherit '

i, evaluateTemperature

@] Inherit

[15

- Code areas
- Data areas
- Trace
B HIL

¢ Options

¥ Scripts Test exec. timeout: |

[®] Inherit '

=l . -

Form T;blel

testIDEA » 03 Chapter 7 » Create a derived test - Function data

46

/ CREATE A DERIVED TEST - EXPECTED VALUE DATA

Selecting the Expected values view
we see that our expected value
“TEMP_OK” is listed here as the
comparison for the returned result.

=
&
>

Max stack used: i [m] Inherit Measzured stack usi

Persistent variables
Variables
Pre-conditions
Expected

Stubs

User Stubs : ' isys_rv == TEMP_OK
Test Points
Analyzer

[m] Expect target exception '

(EEERETEERRLY

- Coverage

Ji Statistics
J= Profiler

= Code areas

J= Data areas
J Trace
B HIL
J& Scripts
J

Options

Furn:l Table |

£

by

testIDEA » 03 Chapter 7 » Create a derived test - Expected value data 47

/ CREATE A DERIVED TEST - RUN

The Save icon can be used to save
the updated test specification.

By clicking on Run all tests, the binary
code will be downloaded to the
target, the tests executed, and the
result returned via the testIDEA Test
Status View area.

[(&

Save

&
&
—1
a2
(v,
b2
LY

Run all
tests

testIDEA » 03 Chapter 7 » Create a derived test - Run

48

/ CREATE A DERIVED TEST - TEST RESULTS

We can now review the test results in
the test output view at the bottom of
testIDEA.

The green background means that all
the tests that have been executed
have passed and our derived test is
marked as OK

When the tests complete, testIDEA
marks each test and section in the
Outline window with a marker. If

everything was OK, a green check
mark is shown, otherwise we get a
red mark with cross inside.

@ Test Status 53]

1] Function/label Message

C\Users\bab... All tests for selected editor completed successfully!Mumber of tests: 1/: / [0K]

s

CONNECTED

= B

All tests for selected editor completed successfully!
Mumber of tests: 1

iz f
[OK]

L
>

I EVALUATION

testIDEA » 03 Chapter 7 » Create a derived test - Test result 49

/ CREATE A DERIVED TEST - META DATA

+# Meta * || Scope: (O Unit O System (®) Default (Unit) [m] Inherit
2 Function)
In order to use the test results for ¢ Persistentvariables || ID: [evalusteTemperature 0001 | | inherit
reporting purposes, we need to J¢- Variables _
identify the tests executed. The Meta y preconditions - Bl inherit * L] View/ Edit |
. . pecte escription: First test case: evaluateTernperature Al
form can be used to give this test an ¥ Stubs
identifier (lD) ¥ User Stubs
& Test Points
* TestID ~ i Analyzer
Test ID is used for documentation v F Coverage —
. - . . J Statistics Human readable test description.
and maintaining a relat|on5h|p to v & Profiler For better readability three markdown tags can be used:

< hold text>** - show text **in bold™, may be used inside wo™r™d, to emphasize part of word.
__<bold text>__ - show text _in bold_, but applied only on word bou__n__dary ('n' is not bold, ' are preserved.
<italic text> - show text *in italic*, may be used inside wo*r*d, to emphasize part of word.

software requirements. J Code areas
& Data areas

Description J& Trace Result cal = italic ta‘t:*r - show text _.in italic_, but applied only on word bou_n_dar]!.r 'n'is not .i'talic, "' are preserved,
Human readable description Of the JE HII_. <code text>" - show text in monospace font, Other markdown tags are ignored |nsm!ethesetags.
e Scripts and will be lost on next run!

test. - Options - -
IEES ; ;o Y Teos | O |
Self-defined tags could be added, Form | Table|
easiing grouping of tests.

When finished click OK and the test _)

appears in the Outline view. Congratulations! You have created your first test vectors!

testIDEA » 03 Chapter 7 » Create a derived test - Meta data 50

8 ADDING MORE TESTS - TABLE OF TEST CASES

As we don’t want to jump between
different forms all the time when
creating tests, it makes sense from
this point on to use the table view to
create further tests.

Changing to table view requires us to
select the base test again in the
Outline. Next, we have to choose
some options from the test
environment that we want displayed
in the table. It is recommended to

display at least Meta data, Function
data and Expected return value data
at this stage in our example.

BE|TIEQ- [id

func

[= Meta

func params *

retVal

] k= Functign

=1
»

[J& Persistent variables 0
O ¥ Variables - | : i evaluateTemperature_0001
[0} Pre-cghditions
[- Expectled
[¥ Stubs
[¥ UserSfubs
[} TestPdints
~ [Analyzer
~ [] ¢ Coferage
[J fstatistics l}
~ [} Prdfiler
[¢ §Code areas
[- fData areas
1§ Traee
Ok HL
[} Seript:
[& Optio
[Dryru
[& Diagrains

™

" evaluateTemperature

! First test case: evaluateTemperature i evaluateTemperature 15

Form | Table

i Scripts
ji= Options
J& Diry run
ji= Diagrams

an'i | Table |

testIDEA » 03 Chapter 8 » Adding more tests - Table of test cases

51

8 ADDING MORE TESTS - TABLE OF TEST CASES

If we now view the tests created, we
can see the base test and our first
derived test in a format not dissimilar
to Excel.

A blue background on a field
indicates an inherited, non-editable,
element. This is the case in the
example opposite for our first test,
where the function name is
inherited.

A green background is used for lists
of values that can be passed as
parameters. This is the case for the
input parameter 15 that was entered
in our first derived test.

@ id desc tags func testTimeout o]
func params *| retVal
0 x
0 : evaluateTemperature i i F _
-8 ME evaluateTernperature_0001 " First test case: evaluateTemperature i evaluateTemperature 15 ! ! .
4
Inherited Individual elements that
elements have already been entered

in previous steps. These
elements can be changed
manually in the table.

testIDEA » 03 Chapter 8 » Adding more tests - Table of test cases 52

8 ADDING MORE TESTS - TABLE OF TEST CASES

This view allows us to quickly

func

testTimeout

cor ™

func

retVal

desc tags
generate further tests very quickly
based upon our base test.
. . ' evaluateTernperature_0001 " First test case: evaluateTemperature
To add another test simply click on ' 5

the plus symbol and another test
case will be created, with empty
fields where test-dependent values
can be entered.

i evaluateTemperature
i evaluateTemperature

i evaluateTemperature

testIDEA » 03 Chapter 8 » Adding more tests - Table of test cases

53

8 ADDING MORE TESTS - TABLE OF TEST CASES

Copy / Paste-options

1. Copy content of a cell and paste it into another

Note: It is not possible to copy the selected cell
content of a cell and paste it into a

Il lain text. : :
celras plain tex 2. Copy text from a cell and paste it as text into a cell

Reason: When a cell is copied there is

a lot of background information _
associated with the test copied with 3. Copy content of a whole test case option (such as

it, such as references to the original Expected values) and paste it to another test case

cell. If you attempt to paste this
information into a cell as plain text,
all the additional background
information will also be inserted.

Try copying a cell and then pasting
the data it into a text editor to better
understand this issue.

testIDEA » 03 Chapter 8 » Adding more tests - Table of test cases

54

8 ADDING MORE TESTS - TABLE OF TEST CASES

Using the boundary strategy as the

basis for test creation, we can create

. . testTimeout careld assert stackUsi ~
all the test vectors discussed earlier func isExpectException S /=
for our evaluateTemperature() _ _ ~ - Ml

0 |' evaluateTemperature ! ! ! ! !

example from the base test. . 11| evaluateTemperature f 14 i : ! : = " _isys_re == TEMP_UNDER_15 :

. 22 | evaluateTemperature f1s5 i : i : = " _isys_nv == TEMP_OK :

The screen shot opposite shows how = 3 o [—— ‘16 : : : ' = ' isys.rv== TEMP_OK i

the resulting unit tests will appear -4 evluteTempenture ' 39 | | | | = | eysrv == TEMP.OK |

. h h . . | d u' evaluateTemperature L 40 I} ! ! ! ! = " _isys_rv == TEMP_OK !

with their unique params values an 26 I|' evaluateTemperature Y ' : ! : = " _isys_rv == TEMP_OVER_40 :
expected expressions results. 4

testIDEA » 03 Chapter 8 » Adding more tests - Table of test cases 55

9 HANDLING TEST CASES

testIDEA offers a few further
capabilities and concepts which may
be helpful once basic test creation
has been mastered. You can view
these items in the following slides or
select individual topics from the links
on the right.

What to do when tests fail
Go to “When tests fail”

Set test ID automatically
Go to “Set test ID automatically”

Interpolation between parameters
Go to “Interpolation between parameters”

Extrapolation between parameters
Go to “Extrapolation between parameters”

Dry run mode
Go to “Dry run mode”

Quick debug mode

Go to “Quick debug mode”

testIDEA » 03 Chapter 9 » Handling test cases 56

9 HANDLING TEST CASES - WHEN TESTS FAIL

@ func testTimeout coreld ™
func params *| retVal isExpectException
Here we review the example shown 0 :
0 . 0 | evaluateTemperature ! ! ! ! = :
OppOSIte' . 1 5" evaluateTemperature F 14 ' = " _isys_rv == TEMP_UNDER_15 i
. . 22 7| evaluateTemperature 15 ! i ! ! = ! isys_rv == TEMP_DK :
Durlng test creation, we Wrongly =3 *|' evaluateTemperature) i i i i = ' isys.rv == TEMP_OK i
eXpeCted the reSU|t S 4| evaluateTemperature ‘39 i i : : = ! jsys v == TEMP_OK :
IITEMP OVER 40// Wheﬂ 4OOC |S u' evaluateTemperature ' ' ' ' = I' _isys_rv == TEMP_OVER_40 I'
= = 26 ;| evaluateTemperature Y ' ' ' ' =l ' _isys_rv == TEMP_OVER_40 '
passed in as the parameter to 4
evaluateTemperature().
When running the test, the following s
will be observed:
The background of the Test Status
area turns red and statistics for the
. . o6 Test Status sﬂ = g
number of failed tests are displayed. _ .
- . ! D Function/la.. Message est report for selected editor, 6 test(s), 0 group(s): A
Additionally, a list of exactly which of B S T vt Seociad s ey B o s B o1 oot cceselly
. . @ test2.9 evaluateTe... Assert expression error_isys_rv == TEMP_OVER_40 _isys_rv = OxD0000002...
the tests failed is shown on the left —
hand side. ceazt/
[0K]
% tﬁ)ﬂxi?:f
test2.8:/
[OK]
test29:
[FAILED]
test2.10: /
10K -
CONNECTED | EvaLaTION

testIDEA » 03 Chapter 9 » Handling test cases - Incorrect logical structures 57

9 HANDLING TEST CASES - WHEN TESTS FAIL

A left mouse click on the failed test

provides you with more information. oo Test Status EE]

In the provided example the test
failed due to an Assert expression
error.

Function/la... Message I%

ChUsers\ba... Test report for selected editor, & test(s), 0 group(s):- 5 tests (83%6) complet...

evaluateTe... Assert expression error:_isys_rv == TEMP_OVER_40 _isys_rv = (wD0000002...

We expected “TEMP_OVER_40” and
we actually were returned the value
2 during testing which equates to the
value “TEMP_OK” as defined in the
enumeration. Such information helps
us to pinpoint the source of the

issue.

Now it is up to the tester to
determine if the test was incorrectly
created (perhaps because the
specification for the function was
misunderstood), or if the function is
incorrectly programmed. If it is the
latter, a bug report can be submitted.

Assert expression error

_isys_rv == TEMP_OVER_40
_isys_rv = 00000002 (2)
TEMP_OVER_40 = (03 (3)

1

testIDEA » 03 Chapter 9 » Handling test cases - Incorrect logical structures

58

9 HANDLING TEST CASES - SET TEST CASE ID AUTOMATICALLY

Manually tagging each test with a
unique ID can be automated if
preferred.

In the iTools menu the option “Set
Test IDs” can be found. This opens a
new dialogue with different options
for configuring automatically
generated test IDs. The format of the
Auto-ID can be defined via the
“Modify” button.

iTools Help

Lf Connect to winlDEA (hold SHIFT for dialog) Ctrl+ Alk+ O

@h Refresh Ctrl+5hift+F3
Rename ...

Set A File Na
nalyzer File Names Set Test Ds

Verify Symbols
Set auto-generated testiDs /—\X
Auto ID format: | m
Test ID Updade Mode
(® Set all IDs

() Set only empty IDs
() Set only wid/uuid/seq/nid part. (/' has to be used as a separator for uid/uuid/seq/nid variables for this setting to work properly)
(0 Set only MON uid/uuid/seq/nid part. (/' has to be used as a separater for uid/uuid/seq/nid variables for this setting to work properly)

Test ID Update Scope

() All test cases in a project

(®) Selected test cases

() Selected and derived test cases

ok | Cancel

testIDEA » 03 Chapter 9 » Handling test cases - Set test case ID automatically

59

9 HANDLING TEST CASES - SET TEST CASE ID AUTOMATICALLY

Modify opens “Project Properties” in
the “General” section.

Here the Auto ID Format can be
configured. The ID can be formed
from a combination of fixed text (e.g.
“Project_Randle_”) and elements
that can be referenced from the
source code or the test. For example,
S(_function) will insert the function
name into the Test ID, while
S(_params) will insert the test’s
parameters.

Numerical IDs, such as sequential
numbers (S(_seq)) can also be
generated automatically. Finally,
entries entered into the “Tag” field of
a test can be inserted using the
formatter S(_tags). This can be useful
for grouping test results together.

The Wizard... button provides further
options.

Project properties

| type filter text

General

Initialization sequence
Multicore configuration
Run configuration

Scripts

Stack usage

Target Initialization Before |
Teols configuration
winlDEA evaluator

Project properties

G v

Settings on this page define test envircnment.
They are used for test execution, and are saved to project file,

Workspace file (cmd. line): |C:\Use5\hahkinje\[}5ktap\T5tldeaWolkspace\BSC[l]]Z\T:stldea.}{jﬂ

To test spec.

Workspace file (test spec): |

||Browse|

Default ret. val. name: |

If both Address and Port fields below are empty, then connection
is made to the most recently used instance of winlDEA.

Address: |

Port: |

[[] Use qualified function names

Aute |ID Format: |i

§{_tags}
Set log file only when instructeg §1 function} I}

Execute command 'Connect to

§&{_params}
Log file: [] §L i)

§{_seq)
Sf_uid}
& _uuid}

|| Wizard...|

J

testIDEA » 03 Chapter 9 » Handling test cases - Set test case ID automatically

60

9 HANDLING TEST CASES - INTERPOLATION

To fill data between test cases with
interpolated values simply provide
empty fields between the start and
end value, mark the empty fields and
the fields containing the border
values, and click the button
“Interpolate between first and last
cell in selected region of table
column®

The empty fields will then be filled
with the interpolated values.

® testTimeout coreld assert

stacklUsage

Interpolate

- R - L isExpectException EXpressions
between first and last cell in selected region of table column.

maxLimit

[= Funcoe
1§ Persistent vari
[] § Variables
1§ Pre-condition
[- Expected
] ¥ Stubs
[¥ User Stubs
] ¥+ Test Points
v [} Analyzer
w []J Coverage
[] & Statist
~w []JF Profiler
[J ¥ Codea
0¥ Dataar
J & Trace
]} HL
[Seripts
1) Options

I — | | T 0

X +

0 i i i i

g _isys_rv == TEMP_UNDER_15
g sys_rv == TEMP_OK

g -isys_rv == TEMP_OVER_40
g -isys_rv == TEMP_UNDER_15

" _isys_nv == TEMP_OVER_40

CnEnEnEnynynynyn

¥ Dry run
Form | Table

testIDEA » 03 Chapter 9 » Handling test cases - Interpolation

61

9 HANDLING TEST CASES - INTERPOLATION

The interpolated values now have
been filled in.

Note: at the time of writing, numbers
were truncated in testIDEA (up to
and including version 9.17.25).
Future versions of testIDEA will round
down for values < 0.5 and round up
for values >=0.5.

testTimeout | coreld

assert stacklsage 6y
: between first and last cell in selected region of table colurlnn. i isExpectException EXpressions * mazxLimit
| | 0 *

i i i |E|
' ' ' = & _isys_rv == TEMP_UNDER_15
| i ' = 5 _isys_rv == TEMP_OK
' i ' = g _isys_rv == TEMP_OVER_40
| ' ' = & _isys_rv == TEMP_UNDER_15
i i , = .
i i , =
' ' ' = ' _isys_rv == TEMP_OVER_40

'S

testIDEA » 03 Chapter 9 » Handling test cases - Interpolation 62

9 HANDLING TEST CASES - EXTRAPOLATION

To extrapolate values, start by
entering two values with which to
start the extrapolation. Select these
and the following fields that are to be
filled with extrapolated values using
the mouse. The first two values
define the value steps for each
consecutive value for the
extrapolation.

Click “Extrapolate” and the selected
region of table column will be filled

with extrapolated values.

B E|EE Q-

e

¥ Dry run
Form | Table

M b= Extrapolate first two cells in selected region of table column, h

] = Function

1 Persistent vari

1) Variables

1 Pre-condition

1§ Expected

[Stubs

1) User Stubs

1) Test Points

1§ Analyzer

v [] ¢ Coverage
[} Statisti

~ []JF Profiler
[J)} Codea
[} Dataar

] Trace

]} HL

[Secripts

1) Optiens

[o7

testTimeout coreld

assert

stacklsage

isExpectException

expressions

raxLimit

0

® +

iu i
igu i
L 80

o= [0 [0 [0 (00 (0] [0 (o] (o] [(g

g _isys_rv == TEMP_UNDER_15
g Jisys_re == TEMP_OK

g Jisys_rv == TEMP_OVER_40
g -isys_rv == TEMP_UNDER_13
g isys_rv==TEMP_UNDER_15

testIDEA » 03 Chapter 9 » Handling test cases - Extrapolation

63

9 HANDLING TEST CASES - EXTRAPOLATION

The extrapolated values have now
been filled in.

w8 8 °

testTimeout coreld assert stacklsage 6y
retVal isExpectException EXprEssions * mazxLimit
0 x

‘ =
! =] ﬁ _isys_rv == TEMP_UNDER_15
: = g _isys_rv == TEMP_OK
‘ = g -isys_rv == TEMP_OVER_40
: = g -isys_rv == TEMP_UNDER_15
: = g -isys_rv==TEMP_UNDER_15
i =
i =
‘ =
‘ =

aa
testIDEA » 03 Chapter 9 » Handling test cases - Extrapolation 64

9 HANDLING TEST CASES - DRY RUN MODE

Dry run mode

This functionality can be used to
record outcome of existing tests
before we modify our source code.
With the test case generator, create a
set of test cases and then use dry run
to record the state of the test and
analyzer results for each test case.

After modifying the target code and
rerunning the tests, the test results
can show us what has changed.

FEHdR 4BRCOXS

Quick Connect to
debug winIDEA

| |
| F| B & 3|

I I
Debug | | Refresh
Mode

Show
source

Switch to winIDEA

testIDEA » 03 Chapter 9 » Handling test cases - Dry run mode

65

9 HANDLING TEST CASES - QuICK DEBUG MODE

Main tool bar — Debug options

Generally speaking, these options
enable the test developer to switch
to the winIDEA environment during
test execution on the target, enabling
use of debug features or to analyze
functionality related to the source
code itself.

Quick debug

This functionality runs the selected
test on the target but stops execution
at the function entry point. The test
developer can then execute the
function as desired (using
breakpoints, stepping, etc.) until
completion. Upon reaching the end
of the function, the testIDEA
environment is re-engaged.

Quick Connect to
debug winIDEA
I I
FERB ABR OO D& S &5 3| 00 H
I I I
Dry Run Debug | | Refresh
Mode
Show
source

Switch to winIDEA

testIDEA » 03 Chapter 9 » Handling test cases - Quick debug mode

66

03

testi JEA

10 SUMMARY

 Start with a non-executable base test which includes the
minimum required information that is common to all tests

* For further derived tests, the core elements of the base tests are
inherited. All further unigue parameters, such as the test’s input
parameter(s) and the expected response value(s) have to be
filled in individually

* The table view helps to quickly create test cases in order to get a

series of test vectors that provide us with the desired test
coverage

testIDEA » 03 Chapter 10 » Summary

68

