MORE COMPLEX TEST CASES

Objectives
At the end of this section, you will be able to
+ Create test cases for functions whose result is not returned by the function

* Create tests for functions using “pass by address” instead of “pass by value”

Contents

MORE COMPLEX TEST CASES

1 EC-LIB® Basic knowledge 3-9

2 EC-LIB® Preparations - Set ID automatically 10-11
3 Create a base test 12-15
4 Create a derived test 16-20
5 Run test case 21

6 Summary 22-23

1 TESTING REAL CODE

The previous unit focused on a fictive
piece of application code, simple
enough to be used as an example but
not very realistic.

In this unit we introduce a real
function from a commercially
available math library that performs
floating point arithmetic using fixed
point calculations. This is useful on
microcontrollers that do not support
floating point arithmetic natively but
need to handle floating point
numbers.

This example will also be used in Unit
05 again to introduce the import of
test vectors into testIDEA.

We start by introducing the code and
some concepts so that tests can be
created.

EC-LIB® - A fixed point math library

Oﬁ * Aimed at microcontrollers without hardware floating point
support

* Available as source code library

* “Square” function used here as a real-world example for
unit testing

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA » 04 Chapter 1 » Testing Real Code 3

e

1 EC-LIB© BASIC KNOWLEDGE - concePT

In floating point arithmetic we know
that 5/2 = 2.5.

But what if we calculate with
integers?

@ Using integer arithmetic:

5/2=2 (rounded to negative infinity)

This results in the fractional part of
the result being lost.

€I - o0 [0[o]o]oo[ofo]o]o]o]1]o]: JEER
0]o[o[o]o]o]o]o[o]o]o]o]o]o]1]o [NEHEEESS

nnnnnnunnunnnnn ~ Left shift with
AOEEOOORDRRRAAAE oo < SRS
- N D

e e

1 2

Division by 2
means a shift to
the right by one

O0DOOoDDROBERREE -2 o000 < o
g g

Whole part Fractional part

Whole part Fractional part

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA » 04 Chapter 1 » EC-LIB® Basic knowledge - Concept 4

e

1 EC-LIB© BASIC KNOWLEDGE - concePT

This loss of accuracy can be
avoided by using shifted values:

Here we divide our value range in a
whole and fractional parts by shifting
(in this example with a shift factor of
6).

€I - o0 [0[o]o]oo[ofo]o]o]o]1]o]: JEER
0]o[o[o]o]o]o]o[o]o]o]o]o]o]1]o [NEHEEESS

@ nnnnnnunnunnnnn ~ Left shift with
OOEOODORCARABRERE oo <l PR
- N Y,
e g

1 2

Division by 2
means a shift to
the right by one

O0DOOoDDROBERREE -2 o000 < o
g g

Whole part Fractional part

Whole part Fractional part

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA » 04 Chapter 1 » EC-LIB® Basic knowledge - Concept 5

1 EC-LIB© BASIC KNOWLEDGE - concePT

The decimal place values are
calculated by the formula shown,
with 6 bits in the fractional part
providing 276 = 64 possible
combinations.

If the values used were to require

more than 10 bits to represent them,
and a 6 bit left shift were to be
performed, we would loose
information on the left hand side and
thereby create an overflow.
Consequently we have to calculate
the size of the shift factor precisely
and weigh it against the accuracy we
will require throughout the
application and calculations.

@ nnnunnunnunnunn :5 Left shift with
0]0]o]o[0]0]0[3[0]x{0 o 0 oo o PRt I
- N D
e e

1 2

Division by 2
means a shift to
the right by one

O0DBOEDDRAOBERREE -2 o000 <— o
g g

Whole part Fractional part

Whole part Fractional part

decimal value of fractional part 32 0.
number of combinatorial possibilities for fractional part 64

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA » 04 Chapter 1 » EC-LIB® Basic knowledge - Concept 6

1 EC-LIB© BASIC KNOWLEDGE - concePT

Generally speaking, it is possible to EC-LIBO uses fixed data types, that already provide us with the required shift factor which
use this fixed point arithmetic is fixed with a declaration, e.g.:

approach not only for binary values

(base 2) but with any base. ECLIB _fix16_4sr(parameterl)

The EC-LIB® uses only base two.

Thus, all calculations can be ... declares a 16-bit integer called parameterl with the related

represented by shifts. shift factor 4 (_4sr means a right shift with factor 4)

ECLIB_fix16_5sl (parameter?)

... declares a 16-bit integer called parameter2 with the related
shift factor -5 (_5s/ means a left shift with factor 5)

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to

protection of intellectual property.

testIDEA » 04 Chapter 1 » EC-LIB® Basic knowledge - Concept

1 EC-LIB®© BASIC KNOWLEDGE - CODE FOR SQUARE FUNCTION

With respect to unit testing, the
function ECLIB_Sgr_16 is considered
complex for the following reasons:

It has no return value provided by
the function itself (function
returns 'void’). Instead, the result
is returned by address in one of
the parameters passed into the
function.

Some of the parameters are

passed by reference, not by value.

The parameters, as used in the
source code, are 'hidden' by the
use of macros. These cannot be
used within testIDEA.

void ECLIB Sqr 16 (ECLIB rcv fix16(*res), ECLIB rcv fixlo6(par)) {

s32 res 32;

if (par == ECLIB S16 NAN) {

*res = ECLIB S16 NAN;

} else if (par == 0) {

*res = 0;

}

else if (ECLIB bool IsInfinity sl6 16(par) == ECLIB TRUE) ({
*res = ECLIB S16 POS INF;

} else {

res 32 = s32 Eclib Square sl6 (par); // a*a
*res = ECLIB sl6 ShiftLimitTosl6 s32 16(res 32,
ECLIB s8 LimitTos8 s32 16(-((s32)*res sf - (2 *
(s32)par sf)))); // a << (sf res - 2*sf a)
}
}

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA » 04 Chapter 1 » EC-LIB® Basic knowledge - Code for square function 8

1 EC-LIB© BASIC KNOWLEDGE - TESTING STRATEGY

Now a strategy is needed to test the
function. One obvious choice is to
input various values (2, -2, 4, etc.)
and check that the square is
calculated and returned (4, 4, 16,
etc.)

Due to the various shifts that can go
on behind the scenes, another
strategy should be developed to test
the limitation imposed by working
with a 16-bit container to store a

fixed point number. This requires the
tester to understand the principles of
calculating floating point numbers
using this fixed point approach.

Here we will utilize a combination of
both strategies to develop our tests.

Recommended possible test strategies include:

e Operational usage — since the code has a clear functionality,
namely to calculate the result of (parameter)?, simply test
the math function for different input values

flx) =x?

* Boundary —due to the complex calculations that are hidden
behind the fixed-point calculations, it makes sense to
consider tests that probe the boundaries of signed 16-bit
values and prove that signed-ness is maintained.

testIDEA » 04 Chapter 1 » EC-LIB® Basic knowledge - Testing method

2 EC-LIB© PREPARATIONS - SETID AUTOMATICALLY

In order to ensure that we can
maintain an overview of our tests, it
is recommended to turn on the
automated Test ID generation before
starting to create the tests.

Project properties

| type filter text

General
Initialization sequence

Project properties l}

Gvvw

Settings on this page define test environment.
They are used for test execution, and are saved to project file

Multicore configuration
Run cenfiguration Workspace file (cmd. line): [C-\Users\bablinje\Desktop\TestideaWorkspace\Exercise02\bsc0002-02.1F
Scripts
Stack usage Workspace file (test spec): | | | Browse |
Target Initialization Before | Default ret. val. name: | |
Tools configuration
winIDEA evaluator If both Address and Port fields below are empty, then connection
is made to the most recently used instance of winlDEA.
Address: | |
Port: | |
[[] Use qualified function names
Auto ID Format: | | Wizard... |
Set log file only when instructed by iSystern support.
Execute command 'Connect to winlDEA' to create log file!
Log file: | | | Bmwse|
< N | Restore Defaults | | Apply |
[ok || canced |

testIDEA » 04 Chapter 2 » EC-LIB® preparations - Set ID automatically

10

2 EC-LIB© PREPARATIONS - SETID AUTOMATICALLY

Here we will specify that the function
name and an automatically
incrementing sequence number
should be used for the automatically
generated Test ID. An underscore “_”

is used to separate these variables in
the formatting string.

E Auto-1D Format

Format
SCfoncion]
Syntax oK
Format string: | §{_function}_${_seq]} 1 |
Example: | min_int_21 | func: "min_int(20, 307’ tags: 'alpha’, 'beta’)
Description of variables:

& _tagsk Test tags separated by '_"
Y functionk Mame of tested function.
§{_params} Values of parameters separated by '-' sign. All characters, which are not allowed in resulting string are replaced with '_".

Y _nidk Generates an D with nested numbers for derived tests, for example 'x3455.2.4'. May not be unique.
§{_seqk Generates [Ds, which are the same as test case sequence number. May not be unique.
& _uidk Generates a string |0, which is unique in one testlDEA/script instance,

S _uuidk Generates a UUID

Mote: It is recommended to use '/ as separators for fields 'id' and 'seq’. This way you can later automatically change only part of (D,
§{nid} and ${seq} variables may not provide unique I when only few test cases get ID assigned. If we assign IDs to all test cases
in one step, they are unique.

ok | cancel

testIDEA » 04 Chapter 2 » EC-LIB® preparations - Set ID automatically

11

3 CREATE A BASE TEST (EC-LIBo)

We start, as previously in Unit 03, by
creating a non-executing base test.
This is performed via the “New test
case” option in the main menu bar.
After using the Refresh button it is
possible to select the ECLIB_Sqr 16
function from the drop-down list.

Mew test case wizard

New test case wizard

Enter basic test case information. Butten 'MNext’ is enabled only for unit tests if function name is defined and symbols are loaded.

X

Scope: (O Unit (O System (@) Default (Unit)

Core ID: w

[#] Auto generate test ID

Function: | ECLIB Sgr_16

/] [¢][%]

| void (short * res, char * res_sf, short par, char par_sf)

—

Pararmeters: |

Expected result
() Default expression for function return value test
p

_ISYs v ==

(®) Custom expressicn and function return value name

Expression: |

Ret. val. name: |

< Back || Next >

Finish

Cancel

testIDEA » 04 Chapter 3 » Create a base test (EC-LIB©)

12

3 CREATE A BASE TEST - META DATA (EC-LIB®)

Having created a base test we again
disable the execution of this
template test case.

In the meta data form, the Auto-ID
setting that we defined in the steps
previous will be displayed.

Description:

Rezult comment:

Tags:

Log before:

Log after:

[Execute '

O Ur% (O System (@ Default (Unit) '

[m] Inherit

| ECLIB_Sqr_16_0

|i [m] Inherit

] Inherit © []View / Edit

W
>

This text refers to specific
test run. It is stored to
results and report only,
and will be lost on next run!

|i [®] Inherit

e K

|i [®] Inherit

testIDEA » 04 Chapter 3 » Create a base test - Meta data (EC-LIB©)

13

3 CREATE A BASE TEST - FUNCTION DATA (EC-LIB®)

In the function data form we see the
chosen ECLIB_Sqr_16 function as
well as the required parameters in
the subline of the function field. “sf”
stands for shift factor in this context
and is used to define the shift factor
for the input parameter and can be
evaluated for the calculation result.

Output values for the result via
pointers are:

short*res

char*res sf

Input values for the input parameter
are:

short par

char par sf

& Meta
& Function
& Persistent variables
J& Variables
J& Pre-conditions
J& Expected
J& Stubs
J& User Stubs
& Test Points
w JE Analyzer
v J& Coverage
& Statistics
w Ji Profiler
J& Code areas
& Data areas
& Trace
B HIL
& Scripts
J& Options
J& Dryrun
& Diagrams

[®] Inherit

Function: ; | ECLIB_Sqr_16

| void (short * res, char * res_sf, short par, char par_sf)

[®] Inherit

Params: |

Ret. val. name: |

[®] Inherit

Test exec, timeout: |

[®] Inherit
Core ID:

Form | Table |

testIDEA » 04 Chapter 3 » Create a base test - Function data (EC-LIB©)

14

3 CREATE A BASE TEST - DECLARE VARIABLES (EC-LIB®)

Declare two input variables:

The result is declared as a short type
and the result_sf (result shift factor)
is declared as char.

This declaration is undertaken in the
base test as the definition of these
local variables will be reused in all
subsequent tests. They will be
created and instantiated for each test
individually.

They could also be defined as
Persistent variables but, since their
content and declaration is unique to
each individual test, and we do not
want to maintain their value across
more than one test, declaration
under Variables is more appropriate.

& Meta
Function Declarations of test local variables Inherit '
¥
& Persistent variables i
&) 0 A
[e ot e
- +
J& Pre-conditions 0 | result short
- Expected i result_sf i char
& Stubs o
J& User Stubs
& Test Points
v Ji Analyzer
w i Coverage l}
& Statistics o
~ & Profiler < >
J& Code areas
J& Data areas - _
¥ Trace Initialization of local and global variables IEI [®] Inherit |
fo HL D Variable Valus al
J& Scripts
& Options *
J& Dy run
& Diagrams
v
£ >
Form Tab|e|

testIDEA » 04 Chapter 3 » Create a base test - Declare variables (EC-LIB©)

15

4 CREATE A DERIVED TEST (Ec-LIB®)

When creating a new derived test
with the test wizard the expected
parameter is not visible as no
function was chosen yet.

To get the parameter
recommendation visible again it is
necessary to select the ECLIB_Sqgr_16
as the function to be tested. Once we
have filled in our parameters, we
have to remove this function again.

It is important to pass the addresses
of result and result_sf (as is shown
opposite) since they have been
declared as pointers.

In this example, the input test
parameter “par” is passed by value
as 4, as is the shift factor “par_sf”, set
to 0. Thus we will test the function
for 42 (expect result = 16, sf = 0).

%] Mew derived test case wizard O *
- []

Mew test case wizard @

Enter basic test case information. Button 'Mext’ is enabled only for unit tests if function name is defined and symbels are loaded. L4

]

Scope: (O Unit () Systern (8 Default (Unit) [] Auto generate test ID
Core 1Dt ~

Function: | V|

Parameters: | &dresult,

Buresult_sf, 4, 0 L |

Expected result

() Default expression for functipn return value test

Jsys v ==

(®) Custom expression and fundtion return value name

iFunction parameters, for example: 10, 30, 'c'i

Expression: |

Ret. val. names |

Parameters: | &tresult, &result_sf, 4, 0 J_

Functicn parameters, for example: 10, 30, 'c’

Expected result
() Default expression for function return value test

_isys_rv ==

testIDEA » 04 Chapter 4 » Create a derived test (EC-LIB©)

16

4 CREATE A DERIVED TEST - META DATA (EC-LIB®)

The meta data in the derived tests
will be kept unchanged. The
checkmark for execution of the test
vector has to be set as this is an
individual test vector with
parameters and expected values and
not a “template” as the base test
before.

LT bsc0002-02iyaml Sﬂ]

1F Meta
I Function
J& Persistent variables . o o
& Variables Scope: (O Unit (O System (@) Default (Unit) ' [®] Inherit
i ;e-:n:i‘tions 1D |_1 " [®] Inherit '
pecte
ﬁ at“b;t . [®Inherit © [View / Edit
SEr Jtubs L.
J& Test Points DS Shetioe: -
w ¢ Analyzer
w | Coverage
& Statistics
~w J Profiler
J& Code areas
& Data areas .
& Trace = B
B HIL
& Scripts h ~ . .
| Options This text refers to specific
P Result comment: test run. Itis stored to
I Dr-"' run . results and report only,
J# Diagrams < > and will be lost on next run!
Tags: | ‘i [®] Inherit '
Log before: | ‘i
Log after: | ‘i [®] Inherit '
Form | Table |
testIDEA » 04 Chapter 4 » Create a derived test - Meta data (EC-LIBO) 17

4 CREATE A DERIVED TEST - PARAMETER (EC-LIB©)

Taking a quick look at the form view
of the function data we see the
inherited function name and the
parameters we entered in the test
case wizard before.

iT bsc0002-02iyaml EXW

¥ Meta
I:# Function
J& Persistent variables
PF:‘ Variables
J& Pre-conditions
J& Expected
& Stubs
J& User Stubs
& Test Points
v J& Analyzer
v J& Coverage
& Statistics
~ J Profiler
J& Code areas
J& Data areas
& Trace
& HIL
& Scripts
J& Options
J& Dry run
& Diagrams

[®] Inherit !

Function: i| ECLIB_5gr_16

| void (short * res, char * res_sf, short par, char par_sf)

[®] Inherit

Params: | Biresult, Bresult_sf, 4, 0

Ret. val. name:

s

[®] Inherit

Test exec. timeout: |

[®] Inherit
Core ID:

Form | Table |

testIDEA » 04 Chapter 4 » Create a derived test - Parameter (EC-LIBO)

18

4 CREATE A DERIVED TEST - INITIALIZE VARIABLES (EC-LIB®)

Initialization of the Variables:

Initialization of the result and
result_sf variables is not mandatory
as they will be written before they
are used, but it is always better to
initialize each and every variable in
use to a known value.

In the case that these variables are
expected to contain O at the end of
the test, other values can be used for

initialization, thereby proving
whether the function changed their
value or not.

The shift factor for the result —
result_sf is set to O, meaning no
shifting, which makes the first test
easier to understand.

iT *bsc0002-02.iyaml EX]

¥ Meta
1:# Function
J& Persistent variables
2 Variables
J& Pre-conditions
J& Expected
& Stubs
J& User Stubs
& Test Points
v J& Analyzer
v J& Coverage
& Statistics
~ J Profiler
J& Code areas
J& Data areas
& Trace
& HIL
& Scripts
J& Options
J& Dry run
& Diagrams

Declarations of test local variables

@ Variable name

" result
! result_sf

<

[®] Inherit

>

Initialization of local and global variables

@ [®] Inherit !

result
result_sf
_readResclution

_writeResolution

Form | Table |

char result_sf (sketch_no_optimise.elf, exercise_02.cpp)

i
Ll

testIDEA » 04 Chapter 4 » Create a derived test - Initialize variables (EC-LIB®)

19

4 CREATE A DERIVED TEST - EXPECTED VALUE DATA (EC-LIB®)

In the Expected form view, we now
enter the results we expect to have if
the test passes, as we did before. The
difference here is that we are
expecting our results in variables
defined for the purposes of the test
rather than as a return value from
the function, as was the case
previously.

In order for the test to be considered
to have passed, the variable result_sf

should retain its value of O.

The value in the variable result is
calculated by the square function and
should be 16 (42).

iT *bsc0002-02iyaml EXW

¥ Meta
€ Function
J& Persistent variables
I Variables
& Pre-conditions
| Expected
& Stubs
J& User Stubs
J& Test Points
v J& Analyzer
w Ji Coverage
& Statistics
~ & Profiler
J& Code areas
J& Data areas
& Trace
B HIL
& Scripts
& Options
J& Dryrun
& Diagrams

Macstackused: | | Mlinherit *

Measured stack usage:

[m] Expect target exception '

result==16

' result_sf==0

Form | Table |

testIDEA » 04 Chapter 4 » Create a derived test - Expected value data (EC-LIB®) 20

5 RUN TEST CASE (EC-LIB®)

Having finished creating our first
derived test, we can now execute the
test to see if it passes or fails.

As we can see here, the function
ECLIB Sqgr 16() passed the test
calculating 42.

@i Test Status 57

1] Function/la... Message

=== ChlUsers\ba... All tests for selected editor completed successfully!Mumber of tests: 1_1: /...

|

CONMNECTED

= B
All tests for selected editor completed successfully! e
Mumber of tests: 1
$1:/
[OK]
w
€ >
| EVALUATION
testIDEA » 04 Chapter 5 » Run test case (EC-LIB©) 21

04

testi JEA

6 SUMMARY

e Even for testing complex code we retain the same approach as
before, building derived tests upon a base test.

* When passing values into a function by address, it is important to
define and initialize variables for this specific purpose in the
tests.

* Such variables are explicitly newly created and initialized prior to
executing each test.

testIDEA » 04 Chapter 6 » Summary

23

