
04

testIDEA

M O R E C O M P L E X T E S T C A S E S
Objectives
At the end of this section, you will be able to

• Create test cases for functions whose result is not returned by the function

• Create tests for functions using “pass by address” instead of “pass by value”

04

testIDEA

Contents

1 EC-LIB© Basic knowledge 3-9

2 EC-LIB© Preparations - Set ID automatically 10-11

3 Create a base test 12-15

4 Create a derived test 16-20

5 Run test case 21

6 Summary 22-23

M O R E C O M P L E X T E S T C A S E S

testIDEA »

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

The previous unit focused on a fictive
piece of application code, simple
enough to be used as an example but
not very realistic.

In this unit we introduce a real
function from a commercially
available math library that performs
floating point arithmetic using fixed
point calculations. This is useful on
microcontrollers that do not support
floating point arithmetic natively but
need to handle floating point
numbers.

This example will also be used in Unit
05 again to introduce the import of
test vectors into testIDEA.

We start by introducing the code and
some concepts so that tests can be
created.

1 TESTING REAL CODE

304 Chapter 1 » Testing Real Code

EC-LIB© - A fixed point math library

• Aimed at microcontrollers without hardware floating point
support

• Available as source code library

• “Square” function used here as a real-world example for
unit testing

testIDEA »

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

In floating point arithmetic we know
that 5/2 = 2.5.

But what if we calculate with
integers?

Using integer arithmetic:

5/2=2 (rounded to negative infinity)

This results in the fractional part of
the result being lost.

1 EC-LIB© BASIC KNOWLEDGE - CONCEPT

404 Chapter 1 » EC-LIB© Basic knowledge - Concept

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

=5

=2
:2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 =5

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 =5.000000

Whole part Fractional part

Left shift with
shift factor 6

:2
Division by 2
means a shift to
the right by one
bit 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

Whole part

=2.500000

Fractional part

1

testIDEA »

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

In floating point arithmetic we know
that 5/2 = 2.5.

But what if we calculate with
integers?

Using integer arithmetic:

5/2=2 (rounded to negative infinity)

This results in the fractional part of
the result being lost.

This loss of accuracy can be
avoided by using shifted values:

Here we divide our value range in a
whole and fractional parts by shifting
(in this example with a shift factor of
6).

1 EC-LIB© BASIC KNOWLEDGE - CONCEPT

504 Chapter 1 » EC-LIB© Basic knowledge - Concept

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

=5

=2
:2

1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 =5

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 =5.000000

Whole part Fractional part

Left shift with
shift factor 6

:2
Division by 2
means a shift to
the right by one
bit 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

Whole part

=2.500000

Fractional part

1

2

testIDEA »

The decimal place values are
calculated by the formula shown,
with 6 bits in the fractional part
providing 2^6 = 64 possible
combinations.

If the values used were to require
more than 10 bits to represent them,
and a 6 bit left shift were to be
performed, we would loose
information on the left hand side and
thereby create an overflow.
Consequently we have to calculate
the size of the shift factor precisely
and weigh it against the accuracy we
will require throughout the
application and calculations.

1 EC-LIB© BASIC KNOWLEDGE - CONCEPT

604 Chapter 1 » EC-LIB© Basic knowledge - Concept

decimal value of fractional part

number of combinatorial possibilities for fractional part
=

32

64
= 0.5

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 =5

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 =5.000000

Whole part Fractional part

Left shift with
shift factor 6

:2
Division by 2
means a shift to
the right by one
bit 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

Whole part

=2.500000

Fractional part

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA »

Generally speaking, it is possible to
use this fixed point arithmetic
approach not only for binary values
(base 2) but with any base.

The EC-LIB© uses only base two.
Thus, all calculations can be
represented by shifts.

1 EC-LIB© BASIC KNOWLEDGE - CONCEPT

704 Chapter 1 » EC-LIB© Basic knowledge - Concept

EC-LIB© uses fixed data types, that already provide us with the required shift factor which
is fixed with a declaration, e.g.:

ECLIB_fix16_4sr(parameter1)

… declares a 16-bit integer called parameter1 with the related
shift factor 4 (_4sr means a right shift with factor 4)

ECLIB_fix16_5sl (parameter2)

… declares a 16-bit integer called parameter2 with the related
shift factor -5 (_5sl means a left shift with factor 5)

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA »

With respect to unit testing, the
function ECLIB_Sqr_16 is considered
complex for the following reasons:

• It has no return value provided by
the function itself (function
returns 'void’). Instead, the result
is returned by address in one of
the parameters passed into the
function.

• Some of the parameters are
passed by reference, not by value.

• The parameters, as used in the
source code, are 'hidden' by the
use of macros. These cannot be
used within testIDEA.

804 Chapter 1 » EC-LIB© Basic knowledge - Code for square function

void ECLIB_Sqr_16 (ECLIB_rcv_fix16(*res), ECLIB_rcv_fix16(par)) {

s32 res_32;

if (par == ECLIB_S16_NAN) {

*res = ECLIB_S16_NAN;

} else if (par == 0) {

*res = 0;

}

else if (ECLIB_bool_IsInfinity_s16_16(par) == ECLIB_TRUE) {

*res = ECLIB_S16_POS_INF;

} else {

res_32 = s32_Eclib_Square_s16(par); // a*a

*res = ECLIB_s16_ShiftLimitTos16_s32_16(res_32,

ECLIB_s8_LimitTos8_s32_16(-((s32)*res_sf - (2 *

(s32)par_sf)))); // a << (sf_res - 2*sf_a)

}

}

1 EC-LIB© BASIC KNOWLEDGE - CODE FOR SQUARE FUNCTION

© Eclipseina GmbH
This application is provided by Eclipseina GmbH. The code as well as the development ideas are subject to
protection of intellectual property.

testIDEA »

Now a strategy is needed to test the
function. One obvious choice is to
input various values (2, -2, 4, etc.)
and check that the square is
calculated and returned (4, 4, 16,
etc.)

Due to the various shifts that can go
on behind the scenes, another
strategy should be developed to test
the limitation imposed by working
with a 16-bit container to store a
fixed point number. This requires the
tester to understand the principles of
calculating floating point numbers
using this fixed point approach.

Here we will utilize a combination of
both strategies to develop our tests.

1 EC-LIB© BASIC KNOWLEDGE - TESTING STRATEGY

904 Chapter 1 » EC-LIB© Basic knowledge - Testing method

Recommended possible test strategies include:

• Operational usage – since the code has a clear functionality,
namely to calculate the result of (parameter)2, simply test
the math function for different input values

𝑓(𝑥) = 𝑥2

• Boundary – due to the complex calculations that are hidden
behind the fixed-point calculations, it makes sense to
consider tests that probe the boundaries of signed 16-bit
values and prove that signed-ness is maintained.

testIDEA »

In order to ensure that we can
maintain an overview of our tests, it
is recommended to turn on the
automated Test ID generation before
starting to create the tests.

2 EC-LIB© PREPARATIONS - SET ID AUTOMATICALLY

1004 Chapter 2 » EC-LIB© preparations - Set ID automatically

testIDEA »

Here we will specify that the function
name and an automatically
incrementing sequence number
should be used for the automatically
generated Test ID. An underscore “_”
is used to separate these variables in
the formatting string.

2 EC-LIB© PREPARATIONS - SET ID AUTOMATICALLY

1104 Chapter 2 » EC-LIB© preparations - Set ID automatically

testIDEA »

We start, as previously in Unit 03, by
creating a non-executing base test.
This is performed via the “New test
case” option in the main menu bar.
After using the Refresh button it is
possible to select the ECLIB_Sqr_16
function from the drop-down list.

3 CREATE A BASE TEST (EC-LIB©)

1204 Chapter 3 » Create a base test (EC-LIB©)

Alle Schritte für base test + declare variables

testIDEA »

Having created a base test we again
disable the execution of this
template test case.

In the meta data form, the Auto-ID
setting that we defined in the steps
previous will be displayed.

3 CREATE A BASE TEST - META DATA (EC-LIB©)

1304 Chapter 3 » Create a base test - Meta data (EC-LIB©)

Alle Schritte für base test + declare variables

testIDEA »

In the function data form we see the
chosen ECLIB_Sqr_16 function as
well as the required parameters in
the subline of the function field. “sf”
stands for shift factor in this context
and is used to define the shift factor
for the input parameter and can be
evaluated for the calculation result.

Output values for the result via
pointers are:

short*res

char*res_sf

Input values for the input parameter
are:

short par

char par_sf

3 CREATE A BASE TEST - FUNCTION DATA (EC-LIB©)

1404 Chapter 3 » Create a base test - Function data (EC-LIB©)

Alle Schritte für base test + declare variables

testIDEA »

Declare two input variables:

The result is declared as a short type
and the result_sf (result shift factor)
is declared as char.

This declaration is undertaken in the
base test as the definition of these
local variables will be reused in all
subsequent tests. They will be
created and instantiated for each test
individually.

They could also be defined as
Persistent variables but, since their
content and declaration is unique to
each individual test, and we do not
want to maintain their value across
more than one test, declaration
under Variables is more appropriate.

3 CREATE A BASE TEST - DECLARE VARIABLES (EC-LIB©)

1504 Chapter 3 » Create a base test - Declare variables (EC-LIB©)

Alle Schritte für base test + declare variables

testIDEA »

When creating a new derived test
with the test wizard the expected
parameter is not visible as no
function was chosen yet.

To get the parameter
recommendation visible again it is
necessary to select the ECLIB_Sqr_16
as the function to be tested. Once we
have filled in our parameters, we
have to remove this function again.

It is important to pass the addresses
of result and result_sf (as is shown
opposite) since they have been
declared as pointers.

In this example, the input test
parameter “par” is passed by value
as 4, as is the shift factor “par_sf”, set
to 0. Thus we will test the function
for 42 (expect result = 16, sf = 0).

4 CREATE A DERIVED TEST (EC-LIB©)

1604 Chapter 4 » Create a derived test (EC-LIB©)

Alle Schritte für derived test + initialize variables

testIDEA »

The meta data in the derived tests
will be kept unchanged. The
checkmark for execution of the test
vector has to be set as this is an
individual test vector with
parameters and expected values and
not a “template“ as the base test
before.

4 CREATE A DERIVED TEST - META DATA (EC-LIB©)

1704 Chapter 4 » Create a derived test - Meta data (EC-LIB©)

Alle Schritte für derived test + initialize variables

testIDEA »

Taking a quick look at the form view
of the function data we see the
inherited function name and the
parameters we entered in the test
case wizard before.

4 CREATE A DERIVED TEST - PARAMETER (EC-LIB©)

1804 Chapter 4 » Create a derived test - Parameter (EC-LIB©)

Alle Schritte für derived test + initialize variables

testIDEA »

Initialization of the Variables:

Initialization of the result and
result_sf variables is not mandatory
as they will be written before they
are used, but it is always better to
initialize each and every variable in
use to a known value.

In the case that these variables are
expected to contain 0 at the end of
the test, other values can be used for
initialization, thereby proving
whether the function changed their
value or not.

The shift factor for the result –
result_sf is set to 0, meaning no
shifting, which makes the first test
easier to understand.

4 CREATE A DERIVED TEST - INITIALIZE VARIABLES (EC-LIB©)

1904 Chapter 4 » Create a derived test - Initialize variables (EC-LIB©)

Alle Schritte für derived test + initialize variables

testIDEA »

In the Expected form view, we now
enter the results we expect to have if
the test passes, as we did before. The
difference here is that we are
expecting our results in variables
defined for the purposes of the test
rather than as a return value from
the function, as was the case
previously.

In order for the test to be considered
to have passed, the variable result_sf
should retain its value of 0.

The value in the variable result is
calculated by the square function and
should be 16 (42).

4 CREATE A DERIVED TEST - EXPECTED VALUE DATA (EC-LIB©)

2004 Chapter 4 » Create a derived test - Expected value data (EC-LIB©)

Alle Schritte für derived test + initialize variables

testIDEA »

Having finished creating our first
derived test, we can now execute the
test to see if it passes or fails.

As we can see here, the function
ECLIB_Sqr_16() passed the test
calculating 42.

5 RUN TEST CASE (EC-LIB©)

2104 Chapter 5 » Run test case (EC-LIB©)

04

testIDEA

SUMMARY

testIDEA »

6 SUMMARY

• Even for testing complex code we retain the same approach as
before, building derived tests upon a base test.

• When passing values into a function by address, it is important to
define and initialize variables for this specific purpose in the
tests.

• Such variables are explicitly newly created and initialized prior to
executing each test.

04 Chapter 6 » Summary 23

