
05

testIDEA

I M P O R T I N G T E S T C A S E S
Objectives
At the end of this section, you will be able to

• Export a test case template from testIDEA suitable for use in Excel

• Import test cases created in Excel into testIDEA

05

testIDEA

Contents

1 Process for large numbers of test cases 3

2 Files of the testing environment 4

3 Generating an Excel-Template 5-12

4 Filling Excel-Table with test cases 13-15

5 Import Excel file 16-19

6 Add persistent variable 20-23

7 Summary 24-25

I M P O R T I N G T E S T C A S E S

testIDEA »

In this unit we will test the same
function that we tested in Unit 04
using a process that can handle a
large numbers of test cases.

It starts by constructing an Excel (or
similar) template for the test vectors
via testIDEA’s export option. From
there, it is possible to use the various
inbuilt table calculation options of
Excel to quickly create test vectors.

Once the test vectors are completed,
the Excel data is re-imported into
testIDEA, allowing us to execute the
tests on the microcontroller target.

1 PROCESS FOR LARGE NUMBERS OF TEST CASES

305 Chapter 1 » Process for large numbers of test cases

Create one base
and one derived
test in testIDEA

Export Excel
template from
testIDEA

Generate or create
test cases in Excel

Import test cases
to testIDEA

Run test cases
on target

MCU

Excel

testIDEA

testIDEA »

2 FILES OF THE TESTING ENVIRONMENT

405 Chapter 2 » Files of the testing environment

testIDEA environment - files

The test cases can be imported
directly from an Excel file. Excel
makes it simple to create test vectors
or import existing vectors into a
testIDEA template created for Excel.

Once the test vectors have been
imported back into testIDEA, they are
saved in YAML format in an *.iYAML
file.

The tests can be executed from
within testIDEA. Integration and
automation is also possible by, for
example, exporting the tests as a
Python script. This can then be used
as part of an automated test
environment with, e.g. Jenkins.

Export

testIDEA

Import

Excel

*.iYAML

Excel
Testona

CSV
Python

PROThe export and import functionality of testIDEA require the
testIDEA Pro license.

testIDEA »

As a starting point for the creation of
our test vectors in Excel, we will take
the test vectors from the previous
unit and display them in the table
view.

This is shown opposite.

3 GENERATE EXCEL-TEMPLATE - INITIAL SITUATION AND CONCEPT

505 Chapter 3 » Generate Excel - Template - Initial situation and concept

Base test

Derived test

testIDEA

testIDEA »

Test representation in Excel:

Every Excel sheet represents one
base test.

The contents of a single Excel-sheet
display the individual tests. When
tests are derived from a base test,
the approach taken up until now with
test creation, the thick horizontal
black lines divide the derived tests
from their base test.

3 GENERATE EXCEL-TEMPLATE - INITIAL SITUATION AND CONCEPT

605 Chapter 3 » Generate Excel - Template - Initial situation and concept

1st base
test

Excel

2nd base
test

3rd base
test

1. Test case

Information from
1st base test

Derived
tests

testIDEA »

As we want to create an Excel-
template, we start by exporting our
two, hand-generated, test vectors to
an Excel file.

Use the “File“ menu to select the
“Export“ option.

3 GENERATE EXCEL-TEMPLATE

705 Chapter 3 » Generate Excel - Template

PRO

testIDEA »

In the “Export Test Cases“ dialogue
we can select the file format and the
path as well as some of the look-and-
feel options.

The use of colors can be helpful if
you are planning to create a lot of
test vectors, making editing of the
entries in Excel easier.

3 GENERATE EXCEL-TEMPLATE

805 Chapter 3 » Generate Excel - Template

testIDEA »

Neuer Screenshot nach neuem
Prinzip mit base und derived
tests

Here we see the exported test
vectors within Excel.

We see that line 4 represents our
base test with the function name and
the locals (declared variables) that
are to be inherited.

Line 5 contains all the elements of
our first derived test: the initialized
variables, the parameters and the
expected value expressions.

3 GENERATE EXCEL-TEMPLATE

905 Chapter 3 » Generate Excel - Template

Export als Excel-file -> entstandenes Excel-Dokument

To get this sorting of the test vector (base and derived in a single Excel sheet) you
must mark only the base test for export.
If the derived test is also marked, further Excel sheets will be generated for each
derived test in addition to the view shown above.

testIDEA »

Excel-Tabelle anpassen -> füllen mit Formel bei result-VergleichNeuer Screenshot mit
eingefüllten Tests

The Excel cells indicated do
not have to be filled as they
are inherited.

3 GENERATE EXCEL-TEMPLATE - HANDLING

1005 Chapter 3 » Generate Excel - Template - Handling

1 1

1

testIDEA »

Excel-Tabelle anpassen -> füllen mit Formel bei result-VergleichNeuer Screenshot mit
eingefüllten Tests

The Excel cells indicated do
not have to be filled as they
are inherited.

The cells containing the test
parameters and their initial
values have to be filled each
time.

This is necessary as a
partial params inheritance
is not supported. In this case,
although the &result and
&result_sf are always the
same, they have to be entered
each time in columns H and I.

3 GENERATE EXCEL-TEMPLATE - HANDLING

1105 Chapter 3 » Generate Excel - Template - Handling

1

1 1
2

22

testIDEA »

Excel-Tabelle anpassen -> füllen mit Formel bei result-VergleichNeuer Screenshot mit
eingefüllten Tests

Finally, the expressions (the
expected test results) must
be filled in.

3 GENERATE EXCEL-TEMPLATE - HANDLING

1205 Chapter 3 » Generate Excel - Template - Handling

3

1 1 22

Now you have a fully functional Excel template.

3

testIDEA »

In order to guarantee the desired test
coverage, the following unit test
cases have been generated by the
software developers.

Included are a Test ID, a test
description, input vectors for each
unit test and expected results.

These test cases will need to be
imported into testIDEA by inserting
them into the Excel template we just
created.

4 FILL EXCEL-TABLE WITH TEST CASES - INITIAL SITUATION

1305 Chapter 4 » Fill Excel-Table with test cases - Initial situation

Bild ursprüngliche Tabelle

Neuer Screenshot nach neuem
Prinzip mit base und derived
tests

testIDEA »

The testIDEA Excel template can now
be extended by using a simple TEXT()
import from the Excel spreadsheet
seen on the previous page.

The Excel TEXT() function simply
copies the content of the cell
referenced (in this case, cells in a
different Excel file) into the cell as
text. This ensures that there are no
issues with numerical representation
that can sometimes occur.

Here, the “result==“ string is
combined with the desired result
from row 4 of the test case Excel
spreadsheet.

4 FILL EXCEL-TABLE WITH TEST CASES

1405 Chapter 4 » Fill Excel-Table with test cases

Example - Reference to the calculated expected results:

= “result==“&TEXT(′[eclib−power−test−vectors.xlsx]SQUARE′!$C4;0)

testIDEA »

After adding the references and
extrapolating the entries, the file will
contain the 100 or more test cases.

This makes it simple to create large
numbers of test vectors for testIDEA
using commonly available tools and
existing test cases.

4 FILL EXCEL-TABLE WITH TEST CASES

1505 Chapter 4 » Fill Excel-Table with test cases

testIDEA »

Once the Excel spreadsheet test
vectors have been generated we can
import them back into testIDEA.

Simply navigate to the “File“ menu
and select the “Import“ option.

5 IMPORT EXCEL FILE

1605 Chapter 5 » Import Excel file

PRO

testIDEA »

The “Import testIDEA test cases“
dialog opens, allowing us to define
the document for import and
required import scope.

5 IMPORT EXCEL FILE

1705 Chapter 5 » Import Excel file

Wizzard -> Import dialogue

testIDEA »

Once completed, the testIDEA view
of the same test cases looks as
shown opposite.

5 IMPORT EXCEL FILE

1805 Chapter 5 » Import Excel file

Ansicht mit importierten Testfällen

testIDEA »

Importing and executing these tests
into testIDEA at this point, for this
particular code, results in about half
the tests passing and the rest failing.

This is because the test rely upon the
#define of NAN, POS_INF and
NEG_INF.

#define are preprocessor values and
do not appear as symbols in the ELF
file - therefore we need to somehow
substitute them.

5 IMPORT EXCEL FILE

1905 Chapter 5 » Import Excel file

testIDEA »

A simple approach to handling the
problem of missing #define
definitions is to define them as
Persistent variables and assign them
the required values for the duration
of the testing.

Persistent variables are analogous to
global variables in a C or C++
application in that they are available
to all functions and methods.
Additionally, by using them, we can
continue to develop legible test cases
using understandable symbols rather
than replacing these symbols with
their numeric representation.

6 ADD PERSISTENT VARIABLE

2005 Chapter 6 » Add persistent variable

Wie geht man grundsätzlich mit persistent variablen um

testIDEA »

The three #define of our EC-LIB©

example must first be declared as
persistent variables in our first
derived test. Therefore we navigate
to the “Persistent variables“ form and
add the new variables to replace the
#define.

Do not declare persistent variables in
the base test as they will be added to
all tests, resulting in testIDEA trying
to initialize them for each test, which
will fail as there can only be one
instance of each symbol.
It is also recommended to copy the
exact expression directly from the
source code so as to avoid typing
errors.

6 ADD PERSISTENT VARIABLE

2105 Chapter 6 » Add persistent variable

Initializiere Persistent Variable

testIDEA »

We also have to initialize our
persistent variables.

Switch to the “Variables“ form and
add them with their accompanying
values manually to the initialization
list (not the declaration list). This is
shown opposite.

As these are persistent, and since
they will not be changed during the
tests, this only needs to be
undertaken for the first derived test.

6 ADD PERSISTENT VARIABLE

2205 Chapter 6 » Add persistent variable

Declare Persistent Variable

testIDEA »

In the last derived test it is
recommend to delete the persistent
variables created for the tests, since
they have lifetime across all test
cases being executed.

This can be performed in the
“Persistent variables“ form by ticking
the check box “Delete all persistent
variables”.

Failing to do so may cause
subsequent tests to fail if they too
attempt to declare persistent
variables with the same names.

6 ADD PERSISTENT VARIABLE

2305 Chapter 6 » Add persistent variable

Delete Persistent Variable

05

testIDEA

SUMMARY

testIDEA »

7 SUMMARY

• #defines can be declared and initialized as persistent variables.
Due to their persistent nature, it is recommended to delete
them in the final test of a set of tests.

• Prepare an Excel template by first creating a single base and
derived test and exporting it in Excel format. This Excel template
can then be expanded upon and re-imported into testIDEA.

• The structure of base and derived tests are transferred to the
Excel template when the base test only is selected in testIDEA. If
the derived test was also selected, a new Excel sheet will be
created for each derived test.

05 Chapter 7 » Summary 25

