
06

testIDEA

T E S T R E P O R T S
Objectives
At the end of this section, you will be able to

• Expand tests to include code coverage

• Enable code coverage for microcontrollers without a hardware program trace interface

• Create a test report for the executed tests

Coverage measurement and

06

testIDEA

Contents

1 Source code coverage types 3

2 Configuring the analyzer 4-7

3 Coverage settings 8-10

4 Statistics settings 11-12

5 Test reports 13-22

6 Summary 23-24

T E S T R E P O R T S

Test report process 13
Create a test report 14
Output formats 15-16
Output format configuration 17-18
Output files 19
Output 20-22

testIDEA »

Typically, standards demand a more
thorough testing approach as the risk
to life the application poses
increases. Code coverage, as will be
covered in this unit, is one of the
evidence metrics that is often
required.

Code coverage is essentially
recording the order of instructions
that a microcontroller executed. The
results display which sections of code
were executed and which were not.

At the simplest level, it is enough to
prove that all statements in the code
were executed; at the highest, it
must be proven that the logic of
decision-making instructions were
executed for all input combination
that result in a change of the
outcome.

1 SOURCE COVERAGE TYPES

306 Chapter 1 » Source coverage types

• Statement coverage
• Function coverage
• Call coverage
• Decision coverage
• Branch coverage
• MC/DC – Modified

Condition/Decision
Coverage

Least Risk
to Life

Greatest Risk
to Life

testIDEA »

Code coverage can be created for
individual tests. However, it is
typically more useful to enable it for
a collection of unit tests and combine
the results into a code coverage
report for the suite of tests executed.

Code coverage is generated using the
Analyzer feature of the iSYSTEM tools
as we cover in this unit.

The process involves:

• Creating a base test with the
default code coverage settings

• Modifying the first derived to
ensure the program trace file
starts empty

• Modifying the last derived test to
close the file and generate the
test report.

2 CONFIGURING THE ANALYZER

406 Chapter 2 » Configuring the analyzer

Configuration process for code coverage during Unit Test

1. Configure Analyser settings in base test
• Define settings that are common to all tests
• Configure modification of program trace file (*.TRD)

to Append

2. Modify first derived test to create clean program trace file

3. Modify final derived test to generate coverage report

testIDEA »

The Analyzer is responsible for
configuring and enabling the
collection of program trace data from
the target (shown opposite).

The sub-options further determine
how to configure the Coverage
measurement and the resulting
Statistics as will be covered on the
following slides.

2 CONFIGURING THE ANALYZER

506 Chapter 2 » Configuring the analyzer

testIDEA »

The Coverage is responsible for
configuring and enabling coverage
analysis calculations used to create
the test report’s coverage results
(shown opposite).

2 CONFIGURING THE ANALYZER

606 Chapter 2 » Configuring the analyzer

testIDEA »

The Statistics is responsible for
configuring which functions should
be included in the code coverage
statistics output (shown opposite).

Additionally, further pass/fail criteria
can be set in the form of minimum
coverage values that must be
achieved for the associated tests to
be considered a ‘pass’. Thus,
although the actual test vectors may
pass, the tests will be considered to
have failed if the desired minimum
coverage has not been achieved.

2 CONFIGURING THE ANALYZER

706 Chapter 2 » Configuring the analyzer

testIDEA »

In the base test, set Analyzer
Run Mode to Start

This simply turns on the collection of
program trace for the target
microcontroller. The next steps
configure where the data should be
stored and how to analyze it.

2 CONFIGURING THE ANALYZER – BASE TEST

806 Chapter 2 » Configuring the analyzer

1

1

testIDEA »

Provide Document file name
where trace data is to be saved:

The Analyzer data is saved using
iSYSTEM’s *.TRD format files.

To maintain an overview of the data
collected, we can define a distinct
analyzer file name for the *.TRD files.
These are entered into the
“Document file” field.

By typing ‘$’ into this field a list of
possible tokens are offered. These
tokens are replaced with the labels
when the *.TRD file is generated.

For example, if the file name is
defined as ${_testId}-
${_function}.trd, the resulting file
name will be created from the
current test’s ID and the name of
function under test.

2 CONFIGURING THE ANALYZER – BASE TEST

906 Chapter 2 » Configuring the analyzer

2

2

testIDEA »

Open mode - Append

To collect accumulated program trace
data from several tests, the Open
mode for the *.TRD can be
configured to accumulate the results
from several tests.

By selecting the Open mode as
Append as shown opposite, all
coverage results will be stored to a
single file.

2 CONFIGURING THE ANALYZER – BASE TEST

1006 Chapter 2 » Configuring the analyzer

3

3

testIDEA »

Further Settings of Analyzer

Slow run: Yes
Save after test: Yes
Close after test: No

If the target microcontroller does not
have a hardware trace
implementation, the Slow Run
feature can be used to collect trace
information.

The *.TRD file is also saved and left
open after each test as the common
inherited settings for derived tests.
The “left open” option simply means
the *.TRD file is left open in the
Analyzer window within winIDEA.

These files can consume a large
amount of RAM, so it is
recommended to keep the number
of files opened simultaneously to a
minimum.

2 CONFIGURING THE ANALYZER – BASE TEST

1106 Chapter 2 » Configuring the analyzer

4

4

testIDEA »

Slow Run for MCUs without trace
port:

As the name suggest, Slow Run
executes the code slowly. Sometimes
very slowly.

If the microcontroller has no
hardware trace with which to collect
the program trace data, Slow Run
executes every assembly instruction
individually, stopping after each
instruction. In the context of Unit
Tests, this should not be an issue as,
at this level, we are checking
software functionality, not hardware
functionality or real-time
performance.

2 CONFIGURING THE ANALYZER – BASE TEST

1206 Chapter 2 » Configuring the analyzer

testIDEA »

Now that the base test is configured
with the common Analyzer settings,
the tests can be created, deriving
them from the base test.

2 DEVELOP UNIT TESTS

1306 Chapter 2 » Configuring the analyzer

testIDEA »

We will now configure the Analyzer
settings so that the *.TRD file is
created anew prior to collecting trace
data. This ensures that the only trace
data in the file is from this suite of
tests.

Select the first derived test.

Click the Inherit option twice
to change to Checked and then
Unchecked.
This ensures the entered
settings are retained.

Change the Open mode setting
from Append to Write.

The trace data collected will now be
appended to the freshly created
*.TRD file.

2 CONFIGURING THE ANALYZER – 1st DERIVED TEST

1406 Chapter 2 » Configuring the analyzer

2
1

32

1

3

testIDEA »

The Analyzer’s Inherit option applies
to the entire Analyzer setting and the
sub-settings below it. In order to
configure the last test to generate a
code coverage report, we first need
to turn off inheritance.

Select the last derived test.

Click the Inherit option twice
to change to Checked and then
Unchecked.
This ensures the entered
settings are retained.

Do not change any other settings
here.

2 CONFIGURING THE ANALYZER – FINAL DERIVED TEST

1506 Chapter 2 » Configuring the analyzer

1

2

2

1

testIDEA »

Now we can configure Coverage:

Activate the coverage settings
via Is active: → yes

Code Coverage can be calculated
using two methods. Here we have
collected all trace information into a
single *.TRD file for analysis in the
last test using the append mode of
the Analyzer.

The Merge configuration option in
Coverage can alternatively be used if
each unit test stored its trace data in
single *.TRD files. The only difference
is between generating one large
*.TRD file, or generating many small
*.TRD files.

3 COVERAGE SETTINGS – FINAL DERIVED TEST

1606 Chapter 3 » Coverage settings

11

testIDEA »

Now we can configure Coverage:

Activate the coverage settings
via Is active: → yes

Here we have defined the
report output format to be
HTML, and have provided a file
name in the Export files field.
In addition, we can determine
exactly which information is
required in the coverage
report.

The Launch Viewer option is set to
Yes. This ensures that the results are
displayed in the selected HTML
format in the default browser upon
completion of the tests.

3 COVERAGE SETTINGS – FINAL DERIVED TEST

1706 Chapter 3 » Coverage settings

11

2

2

testIDEA »

Finally, we can configure Statistics in
the final derived test.

We start by listing all the functions
we required code coverage results
for. To start with, we have added
ECLIB_Sqr_16 since this is the
function we are testing. However,
this function relies upon many other
functions. If so desired, we can add
these into our statistics
measurement.

Expected values for code coverage
can also be entered for each
function. If the expected code
coverage is not achieved, the test (or
suite of tests) are considered to have
failed, even if the tests themselves
passed.

Here we have left the expected
values empty.

3 STATISTICS SETTINGS – FINAL DERIVED TEST

1806 Chapter 3 » Coverage settings

testIDEA »

Once completed, the changes can be
saved and the suite of tests executed.

Upon completion of the tests, as
configured, the default browser is
open with the code coverage results
in HTML.

The various links in the file allow the
user to drill down as far as the
assembler code (if inclusion was
selected in the Statistics settings).

3 HTML REPORT OUTPUT

1906 Chapter 3 » Coverage settings

testIDEA »

Once the tests have been completed
and the code coverage has been
generated, it is time to generate the
report for the test’s outcomes.

This can be undertaken in two steps:

1. Configuration of the report
(Configure Test Report...)

2. Export of the report
(Save Test Report...)

The configuration allows the user to
define a template used by all reports,
whilst directly exporting a report
offers the chance to modify the
template settings.

Both options are accessible from the
menu under Test. In the following
slides we will simply create a single
report directly.

5 TEST REPORT PROCESS

2006 Chapter 5 » Test report

Run test cases
on target

Create test report
Evaluate test
results

Optional: Export to
Continuous
Integration format

testIDEA »

To create a test report we open the
Test menu and select the “Save Test
Report…” option.

5 CREATE A TEST REPORT

2106 Chapter 5 » Test report

testIDEA »

testIDEA can create test
reports in several formats,
including XML, YAML and
Excel’s XLSX file formats.
Here we will select XML and
later configure the report to
also generate an HTML output.

XML format is convenient for usage
in other tools, including viewing in
web browsers, because it is widely
supported.

YAML format is common in testing
tools. It is a superset of JSON and,
due to its human-readable format,
convenient for a quick overview in
text editor or importing into other
tools.

5 TEST REPORT - OUTPUT FORMATS

2206 Chapter 5 » Test report

1

1

testIDEA »

XSLTs are Extensible Stylesheet
Transformations used to
transform XML documents
into other formats, such as
HTML. CSS adds styling (font
style, size, color) to HTML
output. You can use the built-
in XSLTs, or create your own.

Both the XSLT and CSS files can be
modified to match corporate styling
and color choices. Both file types
come from the world of web design
and, if you wish to modify them,
simply analyze the existing content
and refer to the wealth of online
tutorials to learn how to configure
them to meet your needs.

5 TEST REPORT - OUTPUT FORMAT CONFIGURATION

2306 Chapter 5 » Test report

2

2

testIDEA »

Add a link to your
corporation’s logo if desired.
It is also helpful to add a
description for the title of the
report.

5 TEST REPORT - OUTPUT FORMAT CONFIGURATION

2406 Chapter 5 » Test report

3

3

testIDEA »

Here we will define that an
HTML format file is desired for
the report, setting the check
box Create HTML.
The Output file name is given
for the XML file. The HTML file
will be given the same name.
We have also set the check
box Open default browser
after save to ensure the
default browser displays the
report once it is complete.

The HTML content setting can also be
configured to show either all results
or just the results of failed tests.

5 TEST REPORT - OUTPUT FORMAT CONFIGURATION

2506 Chapter 5 » Test report

4

4

testIDEA »

With the chosen settings the test
report will be displayed like this.

5 TEST REPORT - OUTPUT

2606 Chapter 5 » Test report

testIDEA »

The coverage report is attached to
the final test in the set of derived
tests (in this case, test
ECLIB_Sqr_16.0119).

The details for the code coverage
statistics and methods of
measurement can be found in the
winIDEA help under the topic
Analyzer -> Coverage Concepts.

5 TEST REPORT - OUTPUT

2706 Chapter 5 » Test report

testIDEA »

When creating only XML format files
with the intention of viewing them in
a web browser, be aware that some
browsers work differently to others.

If you cannot see the content of the
file when it is opened in your default
browser, you may wish to try
embedding the XLST and CSS into the
XML file using the check box option
shown.

The most portable solution is the
Create HTML option although it
requires the most disk space for the
files generated.

5 TEST REPORT - XML FORMAT CONFIGURATION

2806 Chapter 5 » Test report

Not all browsers may show standalone and embedded versions of reports
correctly. While Internet Explorer has problems with single files (XSLT and CSS
embedded), Chrome does not show report contents when XSLT is stored as a
separate file. Firefox properly displays report content in both cases.

06

testIDEA

SUMMARY

testIDEA »

6 SUMMARY

• Code coverage can be easily generated for unit tests
within testIDEA

• The Slow Run feature enables the generation of program
trace data, even on microcontrollers without hardware
trace support

• Upon completion of testing, reports can be easily
generated for documentation purposes

06 Chapter 6 » Summary 30

