Testing

OBJECT-ORIENTED CODE

Objectives
At the end of this section, you will be able to
+ Explain the difference between testing C++ constructors and methods

» (Create and execute tests for C++ methods

Contents

OBJECT-ORIENTED CODE

1 Basics of testing C++ classes 3-5

2 Testing C++ constructors 6-14
3 Testing a C++ method 15-23
4 Summary 24-25

T TESTING C++ CLASSES -

CORE ELEMENTS

Unit testing of C++ code with
testIDEA is essentially the same as C
code testing with the exception that
C++ objects need to be initialized
prior to using their methods. These
objects have to be allocated to a
persistent variable in order to ensure
that the constructor is called.

Persistent variables have a lifetime
that spans many test cases. They
must be deleted at the end when no
longer needed.

Persistent variable fixes
memory location of object

PER_OBJECT

Pointer shows where

SPER_OBJECT the object lies

write

location

CONSTRUCTOR

The core difference between C and C++ testing are associated with the
initialization of the objects prior to testing the class’s methods.

testIDEA » 07 Chapter 1 » Testing C++ classes - Core elements 3

1 TESTING C++ CLASSES - coDE

class Temperature {

. . . private:
This unit uses for |ts_ exqmples.a small float tCelcius:
demonstration application which float tFahrenheit:;
includes the C++ Class Temperature. float tKelvin;

float convCtoF
float convCtoK
float convFtoC
float convFtoK
float convKtoC
The class also has various public float convKtoF
methods which allow us to operate

and work on this data, including public:

three different constructors. float getTemperature () ;
float getTemperature (tTypes type);

void setTemperature (float temperature);
void setTemperature (float temperature, tTypes

float temperature)
float temperature);
float temperature);

)

)

)

’

Its purpose is to maintain a
temperature value in three different
units, Celsius, Fahrenheit and Kelvin
(stored as 3 private values).

’

float temperature
float temperature
float temperature

’

o~~~ o~ o~ —~

’

type);
Temperature () ;
Temperature (float temperature);
Temperature (float temperature, tTypes type);

testIDEA » 07 Chapter 1 » Testing C++ classes - Code

1 TESTING C++ CLASSES - coDE

The first constructor creates an
object where Celsius is set to zero
and Fahrenheit and Kelvin units are
calculated appropriately.

The second constructor uses the
value passed for temperature and
assumes that value to be in Celsius. It
then calculates Fahrenheit and Kelvin
respectively.

The third constructor allows us to
pass the temperature in a chosen
unit that is defined by the second
parameter.

Temperature: :Temperature (void) {
_tCelcius = 0.0;
_tFahrenheit = convCtoF (tCelcius);
_tKelvin = convCtoK(tCelcius); }

Temperature: :Temperature (float temperature) {

_tCelcius = temperature;
_tFahrenheit = convCtoF (temperature);
_tKelvin = convCtoK (temperature) ; }

Temperature: :Temperature (float temperature, tTypes

type) |

if (type == tTypes::tC) {
Temperature (tCelcius);

} else if (type == tTypes::tF) {
_tFahrenheit = temperature;
_tCelcius = convFtoC(tFahrenheit);
_tKelvin = convFtoK(tFahrenheit);

} else {

/* Assume Kelvin value */

_tKelvin = temperature;

_tCelcius = convKtoC(tKelvin);
_tFahrenheit = convKtoF (tKelvin); }}

testIDEA » 07 Chapter 1 » Testing C++ classes - Code

T TESTING C++ CONSTRUCTORS - CREATE BASE TEST

Creating a base test for the
constructor Temperature (float)

Having chosen the constructor we
wish to test from the Function drop-
down list, we see it actually has two
parameters; the temperature we
wish to pass into the constructor, and
another parameter named this.

this is simply a pointer to the object
in memory where all the data
associated with the object (e.g. the
private variables) are to be stored.

As we have not yet created an object
for the constructor or other methods
to use, we do not add any further
information here in the wizard,
instead finishing by clicking Finish.

%] Mew test case wizard O >
.]
MNew test case wizard Y
Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L
>
Scope: (O Unit () System (@) Default (Unit) [~] Auto generate test ID
Core Dt w
Function: | Temperature::Temperature(float]| v|
| Temperature * (Temperature * this, float temperature) |
Parameters: | |
Expected result
() Default expression for function return value test
sysrv == [s

(®) Custom expression and function return value name

Expression: |

Ret. val. name: |

Net> [Finish |

Cancel

testIDEA » 07 Chapter 1 » Testing C++ constructors - Create base test

T TESTING C++ CONSTRUCTORS - CREATE BASE TEST

As we are creating a base test we will
clear the Execute box in meta data
form as we previously did for C unit
tests.

Description:

Rezult comment:

Tags:

Log before:

Log after:

regardless of filters. It should be unchecked for test specifications, which (] Inherit
are used as base for derived exceptions enly, and are not intended for execution, . .
IE TETETCIR | (W] Inherit
[®] Inherit © []View / Edit
i
v
< >
This text refers to specific

test run. It is stored to
results and report only,
and will be lost on next run!

|i [m] Inherit

| e K]

|i [m] Inherit

testIDEA » 07 Chapter 1 » Testing C++ constructors - Create base test 7

1T TESTING C++ CONSTRUCTORS - PERSISTENT VARIABLE

We add a persistent variable to the
base test. We declare the variable
within the base test and delete it
immediately afterwards.

This will provide us with a per_Object
in each derived test which will be
deleted upon test completion.

¢ <(EEREREEEFTV

TWERE

Meta
Function
Persistent variables
Variables
Pre-conditions
Expected
Stubs
User Stubs
Test Points
Analyzer
- Coverage
& Statistics
& Profiler
J& Code areas
& Data areas
& Trace
HIL
Scripts
Options
Dry run
Diagrams

Declarations of persistent variables

@ Variable name

0 + i per_Object

Tem]

Temperature

Temperatu re::TJh perature()
Temperature:Temperature(float)
Temperature: Temperature(float, tTypes)

Deleted persistent variables

: " per_Object

Temperature:convCtoF
Temperature:convCtokl
Temperature:convFtoC

Temperature:convFtok
Temperature:convKtoC
| Temperature:convKtoF

testIDEA » 07 Chapter 1 » Testing C++ constructors - Persistent variable 8

1T TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

Create a derived test

We have to use the Test option of the
main menu bar once again and select
New derived test.

The function name is inherited, so we
don’t have to fill this field.

Now we have to add the parameters:
Obviously, we need a parameter for
the temperature we want to pass
(e.g. 0.0°C), but we also have to have

a pointer to the temperature object
to store this information.

Here we insert the pointer to the
object, so that the parameter list is:
&per Object, 0.0

"% Mew derived test case wizard O >
.]
Mew test case wizard Y
Enter basic test case information. Button 'Mext’ is enabled only for unit tests if function name is defined and symbaols are loaded. L
>
Scope: (O Unit () System (@) Default (Unit) [] Auto generate test ID
Core ID: ~
i |]
| Temperature * (Temperature * this, float temperature) |
Parameters: | Biper_Object,0.0 I |
|Functior| parameters, for example: 10, 30, 'c'i
Expected result
() Default expression for function return value test
sys v ==
(®) Custorn expression and function return value name
Expression: | |
Ret. val. name: | |
<Back | MNe¢> [Finsh || Cancel

testIDEA » 07 Chapter 1 » Testing C++ constructors - Create derived test

1T TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

"% Mew derived test case wizard O >
.]

New test case wizard Y

Enter basic test case information. Button 'Mext’ is enabled only for unit tests if function name is defined and symbaols are loaded. L

L

It is possible to displays the list and scope OUnit OSystem @ Default (Unit) [Auto generate test ID
datatypes of the parameters once Core D 5
again in this dialogue by selectin
g . g y . g Function: | v|
and then immediately deleting the
funCtiOI’] tO be teStIng from the ﬂeld ITempelature*ﬂempelature*this,ﬂoattempelature} I |
F unc tl on. Parameters: | &per_Object,0.0 I |
|Functior| parameters, for example: 10, 30, 'c'i
Expected result

() Default expression for function return value test
sys v ==

(®) Custorn expression and function return value name

Expression: |

Ret. val. name: |

<Back | MNe¢> [Finsh || Cancel

testIDEA » 07 Chapter 1 » Testing C++ constructors - Create derived test

1T TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

It is recommended to check the
persistent variables once again after
creating the derived test to ensure
that the data has been inherited
correctly.

I:f-gl Meta
1€ Function
'B‘?' Persistent variables
¥ Variables
Pre-conditions
Expected
Stubs
User Stubs
Test Points
Analyzer
J& Coverage
¢+ Statistics
J& Profiler
& Code areas
[Data areas
& Trace
HIL
Scripts
Options
Dry run
Diagrams

(EEEEREER

<

R R R R

Declarations of persistent variables

Sl i T —

0 ' per_Object Temperature
4
< s
Deleted persistent variables Dele
I
0 ' per_Object
%

testIDEA » 07 Chapter 1 » Testing C++ constructors - Create derived test 11

1T TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

We now have a structure for our test
cases but we don’t have any
expected values to define the
pass/fail criteria.

As the constructor does not return a
result we instead need to check that
the object (specifically its private
variables) were correctly initialized. In
the Expected field (as shown here)
we have defined ranges for the
expected results that we consider
acceptable for a pass result.

Expressions for the Expected form
can take any valid C/C++ form.

The private variables of the class can
be accessed using dot-notation, i.e.
per_Object._tCelcius.

¥ Meta
1€ Function
J Persistent variables

2

Variables
Pre-conditions

Expected |

¢ wwwETE

£

3
72
3
3
o

Stubs
User Stubs
Test Points
Analyzer
J Coverage
= Statistics
¥ Profiler
J Code areas
- Data areas
¥ Trace
HIL
Scripts
Opticns
Dry run
Diagrams

Max stack used: l:li [®] Inherit Measured stack usage:

[] Expect target exception |

; : ((per_Object._tCelcius > -0.5) && (per_Object._tCelcius < 0.5)) ==
; : ((per_Object._tFahrenheit > 31.5) && (per_Object._tFahrenheit < 32.5)) ==
t{per_ﬂbject._tl(elvin = 273.0) &8¢ (per_Object._tKelvin < 274.0)) == 'I| I

Normally, private members of a class are not accessible. However, via testIDEA,
we have full access to the inner workings of classes. This is what enables us to
test such code.

testIDEA » 07 Chapter 1 » Testing C++ constructors - Create derived test 12

1T TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

Working with float values

For the purposes of testing, float
values shouldn’t be compared for
strict equality.

Here we have chosen to test for a +
0.5°C range around the desired float
value allows for small errors caused
by the datatype’s representation
limitations to be ignored.

¥ Meta
1€ Function
J Persistent variables

2

Variables
Pre-conditions

Expected |

¢ wwwETE

£

R OR R E

Stubs
User Stubs
Test Points
Analyzer
J Coverage
= Statistics
¥ Profiler
J Code areas
- Data areas
¥ Trace
HIL
Scripts
Opticns
Dry run
Diagrams

Max stack used: l:li [®] Inherit Measured stack usage:

[] Expect target exception |

; : ((per_Object._tCelcius > -0.5) && (per_Object._tCelcius < 0.5)) ==
; i ((per_Object._tFahrenheit > 31.5) && (per_Object._tFahrenheit < 32.5)) ==
t{per_ﬂbject._tl(elvin = 273.0) &8¢ (per_Object._tKelvin < 274.0)) == 'I| I

testIDEA » 07 Chapter 1 » Testing C++ constructors - Create derived test 13

Further tests are created with ease
by using the Table view mode.

The easiest way to add further test
vectors is to copy the parameters and
the expected values of existing tests,
changing the input parameters and
expected results manually.

There is now a suite of tests that can
be used to check the functionality of
one of the class’s constructors.

Tests for the remaining constructors
can be created in a similar manner.

@ func ~
func params *| retval
0 0o : 0
0 |' Temperature:Temperature(float) ! =
L1 : i Temperature: Temperature(float) A &per_Object i 00 i EI i ((per_Object._tCelcius = -0.5) && (per_Object._tCelcius < 0.3)) ==
22 ! TemperaturexTemperature(float) ' &per_Object ' 10.8 i =] " ((per_Object._tCelcius > 10.0) 88 (per_Object._tCelcius = 11.0)) == 1
23 F| TemperaturexTemperature(float) ' &per Object ' 95.0 : =] ¥ ((per_Dbject._tCelcius > 94.5) &8 (per_Ohject._tCelcius < 95.5)) ==
: 4 : i Temperature: Temperature(float) . &per_Object L0 i EI : ((per_Object._tCelcius > -1.5) && (per_Object._tCelcius < -0.5)) ==
25 ! TemperaturezTemperature(float) ' &per_Object ' -503 =] " ((per_Object._tCelcius > -51.0) &8 (per_Object,_tCelcius < -50.00) == 1
> 6 I|' TemperaturezTemperature(float) ' &per Object ' -270.0 =] ¥ ((per_Dbject._tCelcius > -270.5) &8 (per_Object._tCelcius < 260.5)) ==
testIDEA » 07 Chapter 1 » Testing C++ constructors - Create a few more tests 14

2 TESTING A C++ METHQOD

In the previous test we only tested
whether the constructor is
constructing the object properly and
if the private variables have been
initialized correctly.

Now we want to test the class’s
getTemperature() method.

float Temperature::getTemperature () {
return tCelcius;

float Temperature::getTemperature (tTypes type)

float returnValue = 0.0;

if (type == tTypes::tC) {
returnValue = tCelcius;

} else if (type == tTypes::tF) {
returnValue = tFahrenheit;

} else {
/* Assume Kelvin value */
returnValue = tKelvin;

}

return returnValue;

testIDEA » 07 Chapter 2 » Testing a C++ method

{

15

2 TESTING A C++ METHOQOD - PROCESS

The process is very similar to that
used to develop tests for C code but
with the additional of a single extra
step — the constructor needs to have
been called before we can test any
class methods.

The function getTemperature()
simply returns the current
temperature. Thus the test case can
simply compare the returned value
from the method with the value

expected. The value expected,
however, will depend on the current
state of the internal private variables
of the class — this will likely depend
on the state they were left in after
the previous test.

PER_OBJECT RS

—

2

&PER_OBJECT

testIDEA

getTemp()

N\

return

@

testIDEA » 07 Chapter 2 » Testing a C++ method - Process

16

2 TESTING A C++ METHOD - TESTING CONCEPT

To test a C++ method it is
recommended to work with the

displayed structure of base and
derived tests.

Call
Constructor
executed

Base test level

Base test for
getiemperature
Not executed

Derived
Bl testl

Derived
test 2

Derived test level

testIDEA » 07 Chapter 2 » Testing a C++ method - Testing concept 17

2 TESTING A C++ METHOD - CALL CONSTRUCTOR

For the first test we have to call the
C++ constructor for the class. This is
performed at base test level.

In this case we will use the
constructor
Temperature::Temperature(float).

This test case is not a base test but a
reqular test vector at base test level.
So the Execute box in the meta data

has to be left Enabled.

i’j Mew test case wizard

MNew test case wizard

Enter basic test case information. Button 'Next’ is enabled only for unit tests if function name is defined and symbels are loaded.

Scope: (D Unit (O System (@) Default (Unit) [Auto generate test ID
Core |D: ~
Function: | Temperature: Temperature(float)

| ¢l [=]

| Temperature * (Temperature * this, float temperature)

Parameters: |&per_0bject_{1

Expected result
() Default expression for function return value test

ISyE M ==

(®) Custom expression and function return value name

Expression: |

Ret. val. name: |

testIDEA » 07 Chapter 2 » Testing a C++ method - Call constructor

18

2 TESTING A C++ METHOD - CREATE & DELETE PERSISTENT VARIABLE

When testing a C++ method we again
need to ensure there is a persistent
variable per_Object created for use
over the duration of testing. In the
first test that is to be executed (in this
case, the class constructor test) we
define a variable of type
Temperature.

In the very last derived test we must
delete the persistent variable again.

In this way we create a class object
which will exist for the entire time of
testing. The object’s state is retained
between tests and modified
corresponding to the tests executed.

First executed test vector (call of class constructor):

[= Meta
[+ Function
J Persistent variables
J- Variables
- Pre-conditions
- Expected
- Stubs
- User Stubs
J Test Points
v & Analyzer
w & Coverage
i Statistics
w & Profiler
J& Code areas
& Dataareas
J& Trace
& HIL
- Scripts

Declarati

of

P

G

Variable name

so

M " per_Object

ik
Te

[®] Inherit

Temperature

Temperature:Tem perat&eﬂ
Temperature:Temperature(float)
Temperature:Temperature(float tTypes)
Temperature:convCtoF
Temperature:convCtok
Temperature:convFtoC

TemperaturenconvFtokl

TemperatureconvktoC

| Variable name

TemperaturenconvitoF

Ll

Very last test vector (last derived test for getTemperature()):

Deleted persistent variables

[] Delete all persistent variables | | Proposals updated

@ Variable name

4

]

testIDEA » 07 Chapter 2 » Testing a C++ method - Create & delete persistent variable 19

2 TESTING A C++ METHOD - TEST CONSTRUCTOR (OPTIONAL)

Optional: You may wish to test that
the constructor initialized the object
correctly by making sure that the
internal values of the object
correspond to 0.0°C.

If you have already tested the
constructor elsewhere, this is not
absolutely necessary. However, if you
wish to include this pass/fail criteria

again, it can be added as shown here.

1F Meta
[= Function
[+ Persistent variables
¥ Variables
- Pre-conditions
[= Expected
- Stubs
& User Stubs
& Test Points
[Analyzer
w J- Coverage
Ji- Statistics
w J Profiler
- Code areas
J- Data areas
¥ Trace
B HIL
& Scripts
- Options
& Dry run

Mazx stack used: I:li [m] Inherit Measured stack usage:

[W] Expect target exception [m] Inherit
@ | Expressions &
0 : ((per_Object._tCelcius » -0.3) &8 (per_Object._tCelcius = 0.5)) ==

4 F A K ALK

=
®
: i ((per_Object._tFahrenheit > 31.5) &8& (per_Object._tFahrenheit < 32.5)) == 1
; : ((per_Object._tKelvin = 273.0) &8¢ (per_Object._tkelvin < 274.0)) == 1

oh

]

Form Tab|e|

testIDEA » 07 Chapter 2 » Testing a C++ method - Test constructor (optional) 20

2 TESTING A C++ METHOD - CREATE A BASE TEST FOR THE METHOD

Next we will configure the base test T2 New teot cone vz 0 x
for the getTemperature() method New fout case wisard °
. . aw case wWiZzal .
USIng the NeW te‘St case leard Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbuols are loaded. :
In the base test the parameter
&per Object |S entered Scope: (O Unit () System (®) Default (Unit) [] Auto generate test ID
- Core ID: w
This refergncg to the para meter functon: [TempersturesgetTempaaturs)]
&per Object is entered in the base | |
. . . float (Temperature * this)
test to enable inheritance of this =
parameter into all of the derived Parameters: | Gtper_ Object N |
N{Function parameters, for example: 10, 30, 'c'i
. . () Default expression for function return value test
Once this base test is created (after -
ClICklng Fln/Sh)l remember to Clear (®) Custom expression and function return value name
the check box for the Execute option. | |
Ret. val. name: | |
“Back | Net> [Finsh || Cancel

testIDEA » 07 Chapter 2 » Testing a C++ method - Create a base test for the method 21

2 TESTING A C++ METHOD - CREATE A DERIVED TEST

The next step requires the creation of
an executable derived test from the
base test. Rather than enter
information into the wizard, we have
chosen here to enter the pass/fail
criteria directly into the form fields.

After the initialization of the object
with the default constructor, we
expect 0.0°C as our return value for
this first test.

In the Expected form we will again
define a small acceptable range as
our pass/fail criteria.

IF Meta

HEE' Function

[= Persistent variables
Variables
Pre-conditions
Expected

Stubs

User Stubs

Test Points

v & Analyzer

TER TR E

Max stack used: i [m] Inherit Measured stack us
[m] Expect target exception
o Expressions
0L (Lisys_rv > -0.5) 88 Lisys_rv < 0.5)) ==

testIDEA » 07 Chapter 2 » Testing a C++ method - Create a derived test 22

2 TESTING A C++ METHOD - DELETE PERSISTENT VARIABLE

Remember:

Ensure that the persistent variable is
deleted at the end of the final
derived test. To do this, select the
last test in the group and configure it
to delete all persistent variables at
the end of testing.

This is really the key difference
between testing C++ and C:

A class object must be created as a
persistent variable that exists across
several different tests, and variable
needs to be deleted again upon
completion of testing.

B 4
~ B

vyj2da254vTk: Temperature: Temperature(float)
wyi2gyb6jdts : TemperaturesgetTemperature()
[= wyjlizymwwel : TemperaturesTemperature()
[z wyjidvm4smo: /

1€ Meta
= Function
[= Persistent variables
& Variables
- Pre-conditions
J Expected
J Stubs
J UserStubs
= Test Points
w i Analyzer
w - Coverage
- Statistics
v) Profiler
¥ Code areas
J- Data areas
J Trace
B HIL
- Scripts
- Options
& Dryrun
- Diagrams

D of p [H] Inherit '
) Varigble name ~
B
v
< >
Deleted persistent variables I] Delete all persistent variables I Proposals updated
2 | Variable name Al
- ' AN
v
< >

Now we are ready to execute our tests!

testIDEA » 07 Chapter 2 » Testing a C++ method - Delete persistent variable

23

0y

testi JEA

3 SUMMARY

C++ constructors and methods - differences in testing

C++ CONSTRUCTOR C++ METHOD

Define and delete persistent variable in Define persistent variable
each test in first executed test (constructor call)

Delete persistent variable
in final executed derived test

testIDEA » 07 Chapter 3 » Summary

25

