
07

testIDEA

O B J E C T - O R I E N T E D C O D E
Objectives
At the end of this section, you will be able to

• Explain the difference between testing C++ constructors and methods

• Create and execute tests for C++ methods

Testing

07

testIDEA

Contents

1 Basics of testing C++ classes 3-5

2 Testing C++ constructors 6-14

3 Testing a C++ method 15-23

4 Summary 24-25

O B J E C T - O R I E N T E D C O D E

testIDEA »

Unit testing of C++ code with
testIDEA is essentially the same as C
code testing with the exception that
C++ objects need to be initialized
prior to using their methods. These
objects have to be allocated to a
persistent variable in order to ensure
that the constructor is called.

1 TESTING C++ CLASSES - CORE ELEMENTS

307 Chapter 1 » Testing C++ classes - Core elements

The core difference between C and C++ testing are associated with the
initialization of the objects prior to testing the class’s methods.

PER_OBJECT

CONSTRUCTOR

Persistent variable fixes
memory location of object

&PER_OBJECT
Pointer shows where
the object lies

location
write

Persistent variables have a lifetime
that spans many test cases. They
must be deleted at the end when no
longer needed.

testIDEA »

This unit uses for its examples a small
demonstration application which
includes the C++ Class Temperature.

Its purpose is to maintain a
temperature value in three different
units, Celsius, Fahrenheit and Kelvin
(stored as 3 private values).

The class also has various public
methods which allow us to operate
and work on this data, including
three different constructors.

1 TESTING C++ CLASSES - CODE

07 Chapter 1 » Testing C++ classes - Code

class Temperature {

private:

float _tCelcius;

float _tFahrenheit;

float _tKelvin;

float convCtoF(float temperature);

float convCtoK(float temperature);

float convFtoC(float temperature);

float convFtoK(float temperature);

float convKtoC(float temperature);

float convKtoF(float temperature);

public:

float getTemperature();

float getTemperature(tTypes type);

void setTemperature(float temperature);

void setTemperature(float temperature, tTypes

type);

Temperature();

Temperature(float temperature);

Temperature(float temperature, tTypes type);

};

4

testIDEA »

The first constructor creates an
object where Celsius is set to zero
and Fahrenheit and Kelvin units are
calculated appropriately.

The second constructor uses the
value passed for temperature and
assumes that value to be in Celsius. It
then calculates Fahrenheit and Kelvin
respectively.

The third constructor allows us to
pass the temperature in a chosen
unit that is defined by the second
parameter.

1 TESTING C++ CLASSES - CODE

07 Chapter 1 » Testing C++ classes - Code

Temperature::Temperature(void) {

_tCelcius = 0.0;

_tFahrenheit = convCtoF(_tCelcius);

_tKelvin = convCtoK(_tCelcius); }

Temperature::Temperature(float temperature) {

_tCelcius = temperature;

_tFahrenheit = convCtoF(temperature);

_tKelvin = convCtoK(temperature); }

Temperature::Temperature(float temperature, tTypes

type) {

if (type == tTypes::tC) {

Temperature(_tCelcius);

} else if (type == tTypes::tF) {

_tFahrenheit = temperature;

_tCelcius = convFtoC(_tFahrenheit);

_tKelvin = convFtoK(_tFahrenheit);

} else {

/* Assume Kelvin value */

_tKelvin = temperature;

_tCelcius = convKtoC(_tKelvin);

_tFahrenheit = convKtoF(_tKelvin); }}

5

testIDEA »

Creating a base test for the
constructor Temperature (float)

Having chosen the constructor we
wish to test from the Function drop-
down list, we see it actually has two
parameters; the temperature we
wish to pass into the constructor, and
another parameter named this.

this is simply a pointer to the object
in memory where all the data
associated with the object (e.g. the
private variables) are to be stored.

As we have not yet created an object
for the constructor or other methods
to use, we do not add any further
information here in the wizard,
instead finishing by clicking Finish.

1 TESTING C++ CONSTRUCTORS - CREATE BASE TEST

07 Chapter 1 » Testing C++ constructors - Create base test

SCREENSHOT

6

testIDEA »

As we are creating a base test we will
clear the Execute box in meta data
form as we previously did for C unit
tests.

1 TESTING C++ CONSTRUCTORS - CREATE BASE TEST

07 Chapter 1 » Testing C++ constructors - Create base test

SCREENSHOT

7

testIDEA »

We add a persistent variable to the
base test. We declare the variable
within the base test and delete it
immediately afterwards.

This will provide us with a per_Object
in each derived test which will be
deleted upon test completion.

1 TESTING C++ CONSTRUCTORS - PERSISTENT VARIABLE

07 Chapter 1 » Testing C++ constructors - Persistent variable 8

testIDEA »

Create a derived test

We have to use the Test option of the
main menu bar once again and select
New derived test.

The function name is inherited, so we
don’t have to fill this field.

Now we have to add the parameters:
Obviously, we need a parameter for
the temperature we want to pass
(e.g. 0.0°C), but we also have to have
a pointer to the temperature object
to store this information.

Here we insert the pointer to the
object, so that the parameter list is:
&per_Object, 0.0

1 TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

07 Chapter 1 » Testing C++ constructors - Create derived test

SCREENSHOT

9

testIDEA »

It is possible to displays the list and
datatypes of the parameters once
again in this dialogue by selecting
and then immediately deleting the
function to be testing from the field
Function.

1 TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

07 Chapter 1 » Testing C++ constructors - Create derived test

SCREENSHOT

10

testIDEA »

It is recommended to check the
persistent variables once again after
creating the derived test to ensure
that the data has been inherited
correctly.

1 TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

07 Chapter 1 » Testing C++ constructors - Create derived test 11

testIDEA »

We now have a structure for our test
cases but we don’t have any
expected values to define the
pass/fail criteria.

As the constructor does not return a
result we instead need to check that
the object (specifically its private
variables) were correctly initialized. In
the Expected field (as shown here)
we have defined ranges for the
expected results that we consider
acceptable for a pass result.

Expressions for the Expected form
can take any valid C/C++ form.

The private variables of the class can
be accessed using dot-notation, i.e.
per_Object._tCelcius.

1 TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

07 Chapter 1 » Testing C++ constructors - Create derived test

SCREENSHOT

12

Normally, private members of a class are not accessible. However, via testIDEA,
we have full access to the inner workings of classes. This is what enables us to
test such code.

testIDEA »

Working with float values

For the purposes of testing, float
values shouldn’t be compared for
strict equality.
Here we have chosen to test for a ±
0.5°C range around the desired float
value allows for small errors caused
by the datatype’s representation
limitations to be ignored.

1 TESTING C++ CONSTRUCTORS - CREATE DERIVED TEST

07 Chapter 1 » Testing C++ constructors - Create derived test 13

testIDEA »

Further tests are created with ease
by using the Table view mode.

The easiest way to add further test
vectors is to copy the parameters and
the expected values of existing tests,
changing the input parameters and
expected results manually.

There is now a suite of tests that can
be used to check the functionality of
one of the class’s constructors.

Tests for the remaining constructors
can be created in a similar manner.

1 TESTING C++ CONSTRUCTORS - CREATE A FEW MORE TESTS

07 Chapter 1 » Testing C++ constructors - Create a few more tests

SCREENSHOT

14

testIDEA »

In the previous test we only tested
whether the constructor is
constructing the object properly and
if the private variables have been
initialized correctly.

Now we want to test the class’s
getTemperature() method.

2 TESTING A C++ METHOD

07 Chapter 2 » Testing a C++ method

float Temperature::getTemperature() {

return _tCelcius;

}

float Temperature::getTemperature(tTypes type) {

float returnValue = 0.0;

if (type == tTypes::tC) {

returnValue = _tCelcius;

} else if (type == tTypes::tF) {

returnValue = _tFahrenheit;

} else {

/* Assume Kelvin value */

returnValue = _tKelvin;

}

return returnValue;

}

15

testIDEA »

The process is very similar to that
used to develop tests for C code but
with the additional of a single extra
step – the constructor needs to have
been called before we can test any
class methods.

The function getTemperature()
simply returns the current
temperature. Thus the test case can
simply compare the returned value
from the method with the value
expected. The value expected,
however, will depend on the current
state of the internal private variables
of the class – this will likely depend
on the state they were left in after
the previous test.

2 TESTING A C++ METHOD - PROCESS

07 Chapter 2 » Testing a C++ method - Process

return

PER_OBJECT

testIDEA

&PER_OBJECT

getTemp()

1

2

3

4

16

testIDEA »

To test a C++ method it is
recommended to work with the
displayed structure of base and
derived tests.

2 TESTING A C++ METHOD - TESTING CONCEPT

07 Chapter 2 » Testing a C++ method - Testing concept 17

Base test level

Derived test level

Base test for
getTemperature

Not executed

Derived
test 1

Derived
test 2

Call
Constructor

executed

testIDEA »

For the first test we have to call the
C++ constructor for the class. This is
performed at base test level.

In this case we will use the
constructor
Temperature::Temperature(float).

This test case is not a base test but a
regular test vector at base test level.
So the Execute box in the meta data
has to be left Enabled.

2 TESTING A C++ METHOD - CALL CONSTRUCTOR

07 Chapter 2 » Testing a C++ method - Call constructor 18

testIDEA »

When testing a C++ method we again
need to ensure there is a persistent
variable per_Object created for use
over the duration of testing. In the
first test that is to be executed (in this
case, the class constructor test) we
define a variable of type
Temperature.

In the very last derived test we must
delete the persistent variable again.

In this way we create a class object
which will exist for the entire time of
testing. The object’s state is retained
between tests and modified
corresponding to the tests executed.

2 TESTING A C++ METHOD - CREATE & DELETE PERSISTENT VARIABLE

07 Chapter 2 » Testing a C++ method - Create & delete persistent variable 19

First executed test vector (call of class constructor):

Very last test vector (last derived test for getTemperature()):

testIDEA »

Optional: You may wish to test that
the constructor initialized the object
correctly by making sure that the
internal values of the object
correspond to 0.0°C.

If you have already tested the
constructor elsewhere, this is not
absolutely necessary. However, if you
wish to include this pass/fail criteria
again, it can be added as shown here.

2 TESTING A C++ METHOD - TEST CONSTRUCTOR (OPTIONAL)

07 Chapter 2 » Testing a C++ method - Test constructor (optional)

SCREENSHOT

20

testIDEA »

Next we will configure the base test
for the getTemperature() method
using the New test case wizard.

In the base test the parameter
&per_Object is entered.

This reference to the parameter
&per_Object is entered in the base
test to enable inheritance of this
parameter into all of the derived
tests.

Once this base test is created (after
clicking Finish), remember to clear
the check box for the Execute option.

2 TESTING A C++ METHOD - CREATE A BASE TEST FOR THE METHOD

07 Chapter 2 » Testing a C++ method - Create a base test for the method

SCREENSHOT

21

testIDEA »

The next step requires the creation of
an executable derived test from the
base test. Rather than enter
information into the wizard, we have
chosen here to enter the pass/fail
criteria directly into the form fields.

After the initialization of the object
with the default constructor, we
expect 0.0°C as our return value for
this first test.

In the Expected form we will again
define a small acceptable range as
our pass/fail criteria.

2 TESTING A C++ METHOD - CREATE A DERIVED TEST

07 Chapter 2 » Testing a C++ method - Create a derived test 22

testIDEA »

Remember:

Ensure that the persistent variable is
deleted at the end of the final
derived test. To do this, select the
last test in the group and configure it
to delete all persistent variables at
the end of testing.

This is really the key difference
between testing C++ and C:

A class object must be created as a
persistent variable that exists across
several different tests, and variable
needs to be deleted again upon
completion of testing.

2 TESTING A C++ METHOD - DELETE PERSISTENT VARIABLE

07 Chapter 2 » Testing a C++ method - Delete persistent variable

SCREENSHOT

23

Now we are ready to execute our tests!

07

testIDEA

SUMMARY

testIDEA »

3 SUMMARY

07 Chapter 3 » Summary 25

C++ CONSTRUCTOR C++ METHOD

Define and delete persistent variable in
each test

Define persistent variable
in first executed test (constructor call)

Delete persistent variable
in final executed derived test

C++ constructors and methods - differences in testing

