Testing

STATE-DEPENDENT CODE

Objectives

At the end of this section, you will be able to

» C(reate a test for a state machine, where tests results depend on the state machine's internal state

Contents

STATE-DEPENDENT CODE

W 00 N OO U1 B W N -

Concept of a state machine
Example for the state machine
Initialization of the state machine
Testing get-function

Testing state changes

Create final state

Overview test vectors

What about coverage?

Summary

4-6
A

10
11
12
13
14-15

1 CONCEPT OF ASTATE MACHINE

What has to be tested?

A state machine is, by its very nature,

an object whose next state change is

dependent upon its current state. v

Any unit testing platform for such

programming constructs must ensure STATE n, > STATE n,
that this state information is

maintained between tests.

One recommend test strategy here is
a test framework using the CRUD
(Create, Read, Update, Release)
approach. This allows for testing code
that can have states and outcomes

@

Call “Create”

@

Call “getTraffic

3

Call “trafficLight

@

Call “trafficLight

that vary for the same function calls. function, i.e. Light” to check NextState” to Resgt function
: the function for correct move the state again to ensure
There are parallels here to the testing that initializes state. machine to its that the state

of C++ that we saw in Unit 07. C++
had its class object that was

the state

next

machine can be

maintained across method calls machine to its programmed returned to its
during testing; a state machine will starting state state. Litializecistate
likewise, need its state data (trafficLight

maintained across function calls. Reset)

testIDEA » 08 Chapter 1 » Concept of a state machine

2 EXAMPLE FOR THE STATE MACHINE

The example code for this unit
represents the state changes of a
traffic light.

The different traffic light states are
defined in an enum. As mentioned
previously, this is preferable coding
strategy to using #define and
testIDEA is additionally able to access
these symbols for use in the tests

enum TrafficLightState {
STATUS INIT,
STATUS RED,
STATUS RED AMBER,
STATUS GREEN,
STATUS AMBER,
STATUS ERROR 1,
STATUS ERROR 2

}i

static TrafficLightState trafficLightState =
STATUS INIT;

static TrafficLightState trafficLightNextState =
STATUS INIT;

static TrafficLight trafficLight = LIGHT ALL OFF;

void trafficLightReset (void) {

_trafficLightState = STATUS INIT;
_trafficLightNextState = STATUS INIT;

testIDEA » 08 Chapter 2 » Example for the state machines

2 EXAMPLE FOR THE STATE MACHINE

The State Machine has the following
transitions:

Init > Amber

Amber - Red

Red - Red_Amber
Red_Amber - Green
Green - Amber

Additionally, two error states are

defined providing a flashing amber
light in the event that an error should
occur.

void attribute ((noinline))
trafficLightNextState (void) {
_trafficLightState =

_trafficLightNextState;

switch (trafficLightState) {
case STATUS INIT:
_trafficLightNextState
STATUS AMBER;
break;

case STATUS RED:
_trafficLightNextState
STATUS RED AMBER;
break;

case STATUS RED AMBER:
_trafficLightNextState
STATUS_GREEN;
break;

case STATUS GREEN:
_trafficLightNextState
STATUS AMBER;
break;

case STATUS AMBER:
_trafficLightNextState
STATUS RED;
break;

case STATUS ERROR 1:
_trafficLightNextState
STATUS ERROR 2;
break;

case STATUS ERROR 2:
_trafficLightNextState
STATUS ERROR 1;
break;

default:
_trafficLightState =
STATUS ERROR 1;
_trafficLightNextState
STATUS ERROR 2; 1}

testIDEA » 08 Chapter 2 » Example for the state machines

2 EXAMPLE FOR THE STATE MACHINE

Testing state machines with testIDEA
is a little bit tricky. Depending on the
size of the state machine and the
project, a model-based testing
approach might be more
appropriate.

Our traffic light project has a modest
complexity and thus a very limited
number of test cases. Thus we can
demonstrate the testing of this state
machine quite simply just with

testIDEA.

TrafficLight attribute

case STATUS AMBER:

((noinline)) (_trafficLightState == STATUS ERROR 1) {

getTrafficLight (void) { returnValue = LIGHT AMBER;
TrafficLight returnValue = else if

LIGHT ALL OFF; (_trafficLightState

== STATUS ERROR 2) {

switch (trafficLightState) ({ returnValue = LIGHT ALL OFF;

case STATUS INIT: } else {
/* Do nothing - return returnValue = LIGHT AMBER; }
default lights break;
off state */
break; default:

_trafficLightState = STATUS ERROR 1;
case STATUS RED: _trafficLightNextState = STATUS ERROR 2;}
returnvValue =
LIGHT RED;

break;

return returnValue;}

case STATUS RED AMBER:
returnValue =
LIGHT RED AMBER;
break;

case STATUS GREEN:
returnValue =
LIGHT GREEN;
break;

testIDEA » 08 Chapter 2 » Example for the state machines 6

3 INITIALIZATION OF THE STATE MACHINE

First of all we have to create the first
part of the testing framework:

We create an executed test case on
base test level for the initial state. In
our example this initial state is
created by the function
trafficlLightReset.

Create first executed test on base test level to initialize state machine
— trafficLightReset

x

MNew test case wizard -

New test case wizard

Enter basic test case information, Button 'Nexdt' is enabled only for unit tests if function name is defined and symbols are loaded.

Scope: O Unit) System (®) Default (Unit)] Auto generate test ID

Core ID: ~

Function: | trafficlightReset v|

| void)

Parameters: |

Expected result

() Default expression for function return value test
Jsys v ==

(®) Custom expression and function return value name

Expression: | |

Ret. val. name: | |

. <Back | Net> [Fsh | Cancel

testIDEA » 08 Chapter 3 » Initialisation of the state machines

3 INITIALIZATION OF THE STATE MACHINE

In this first test case we expect that
the traffic light is initialized in the
correct manner, e.g. that

STATUS INIT is stored in the internal
variables of the state machine.

iT Screenshots.iyaml ES]

[= Meta

[= Function

J Persistent variables
- Variables

r E= E)(p-ecled I

> Stubs
¥ User Stubs
J- Test Points
w - Analyzer
~v J& Coverage
J Statistics
wv | Profiler
J- Code areas
J- Dataareas
J Trace
& HIL
¥ Scripts
J Options
¥ Dryrun
- Diagrams

Max stack used: l:li [®] Inherit ' Measured stack usage:

[m] Expect target exception ' [®] Inherit '
@ | Expressions =
I ! _trafficLightState== STATUS_INIT

o ! _trafficLightMextState == STATUS_INIT

Form Table|

s

s Expressions
S0 @' _trafficlightState== STATUS_INIT
- * ' _trafficLighthextState == STATUS_INIT

testIDEA » 08 Chapter 3 » Initialisation of the state machines

4 TESTING GET-FUNCTION

The next step is to create a second
executed test vector at base test level
which is used to test the
getTrafficLight function.

To test this function we have to enter
the function name as well as the
expected value (STATUS INIT).

Create second executed test on base test level to ensure that get-function

returns expected values
— getTrafficLight

Mew test case wizard

MNew test case wizard

Enter basic test case information. Button 'Next’ is enabled only for unit tests if functiocn name is defined and symbels are loaded.

O
s

Scope: () Unit () System (®) Default (Unit)

Core ID: R

[] Auto generate test ID

Function: | getTrafficLight

] (&[]

| TrafficLight 0

Parameters: |

Expected result

(®) Default expression for function return value test

sys.rv == STATUS_INIT

(C) Custorn expression and function return value name
Expression:

Ret. val. name:

Enter expected function return value, This value will be used to automatically generate expression '_isys_rv == <value>
in section 'Expected’. For example, if you enter:
10
expression '_isys_rv == 10" will be automatically generated. This feature can enly be used for
scalar types (char, int, ...}. For complex types specify Ret. val. name and expression below.
Additional expressions can later be entered in section "Variables',

testIDEA » 08 Chapter 4 » Testing get-function 9

5 TESTING STATE CHANGES

Next we create a base test for the Create third (non executed) base test and derived tests to check
trafficLightNextState function, which internal local variable status after each call

will not be executed, and the o
accompanying derived tests with the — trafficLightNextState

changing expected states.

® func testTimeout assert
func params ©| retVal isExpectException
0
0 | trafficLightNextState i i i i =

. 13| trafficlightNextState = ' _trafficLightState == STATUS_INIT

> 2 ;| tafficLightNextState = ' _trafficLightState == STATUS_AMBER

> 35| tafficLightNedState ‘ : : ‘ = " _trafficLightState == STATUS_RED
By deriving these tests from a base - 4 4| trafficLightNextState ' ' ' | = ' _trafficLightState == STATUS RED_AMBER

i i i . > 5 4| trafficlightNextState = ' _trafficLightState == STATUS_GREEN

test, it makes it easier to modify or 6 2|1 taficlightNertState o . inificLihtState e STATUS AMBER
replace this section should the state P = il iahiSiote - STATUS.RED

B

machine functionality ever change in
the future.

=

testIDEA » 08 Chapter 5 » Testing state changes 10

6 CREATE FINAL STATE

We will then create one more
executed test at base test level to set
the state machine into a final state.

In this example the final state is
moved into by a call to
trafficLightReset. This leaves the state
machine in its reset state.

Create fourth executed test on base test level to ensure that the state

machine can be returned to its initial state

— trafficLightReset

- .
Mew test case wizard

New test case wizard

Enter basic test case infermation, Button 'Mext’ is enabled only for unit tests if function name is defined and symboels are loaded.

|
ped

Scope:) Unit () System (@) Default (Unit)

Core ID:

o

[#] Auto generate test ID

Functicn: | trafficLightReset

] [#][®]

| void

Parameters: |

testIDEA » 08 Chapter 6 » Create final state

11

OVERVIEW TEST VECTORS

After all the test cases have been

created, the s.tructure should look as > ol iidighited |y o) 5 3 Q- 9 e oo
ShOWﬂ OppOSIte. v & vyjDzefatcjk : trafficLightNextState [k Meta func * expressions
[= wyl6paSqq5sw: / [A k= Function 0 oo M
[wylBpadrigio : / [Persistent variables 0 | trafficLightReset Pt T _trafficlightState== STATUS_INIT ! _trafficLightMNextState == STATUS_INIT '
b vylbpalrardw : / L1/ Variables 1 | gefTrafficLight i "E] P _jisys.rv == STATUS_INIT
E 3:::3:6"‘:‘;‘; gt g:’e:s:m"”s 2 | trafficLightNexState i ‘g
B vyl6padrhmoy.:/ O] Stubs 3| trfficlightNextState ') trafficLightState == STATUS INIT " _trafficLightNextState== STATUS_AMBER
[vylBpadrhmdw: /] ¥ User Stubs 4 | trafficLightNextState ! '[=] ' _trafficLightState == STATUS_AMBER
[wyjOuvswivel : trafficLightReset [} Test Points 5 | trafficlightMextState ' '[=] ' _trafficLightState == STATUS_RED
v [} Analyzer 6 | trafficLightMextState i '] ' _trafficLightState == STATUS_RED_AMBER
v L} Coverage 7 | trafficLightNedState ' | 'E] ' _trafficLightState == STATUS_GREEN
v E }:'r o:::'“'cs & |' trafficlightNedState ‘5] ' trafficLightState == STATUS AMBER
¥ Codeareas 9 ' trafficLightNextState ' 'E| ' _trafficLightState == STATUS_RED .
[} Dataareas 10 | trafficLightReset ! o '[=] ' _trafficLightState== STATUS_INIT ' _trafficLightMextState == STATUS_INIT
[¥ Trace o
e rm

testIDEA » 08 Chapter 7 » Overview test vectors

8 WHAT ABOUT TEST COVERAGE?

These tests and this strategy most
likely provides close to a 100% code
(0]
coverage. However, the coverage of Close to a 100% code coverage,
the functionality is not fully but:
guaranteed. This is because we ’

haven't checked that we can reset what about test coverage?

the state machine successfully at any (" ible at int th |)
Sl 17 1 G, OF Hhe [ere reset possible at any point, more than one cycle, ...

than one cycle of the state machine
can be achieved. This highlights the

challenges faced by those developing > Model Based Testing approach recommended
ST VB for more complex state machines

iISYSTEM would recommend
evaluating a Model Based Testing
approach to test case generation to
ensure that such software is fully
tested. Such an approach is possible
using the software tools from

, such as

testIDEA » 08 Chapter 8 » What about coverage? 13

https://www.seppmed.de/en
https://www.seppmed.de/de/portfolio/mbtsuite/

08

testi JEA

9 SUMMARY

* The testing process for a low-complexity state machine
contains four steps:

* Testing the initialization of the state machine
* Testing any “getState” functions
e Testing the “state change” functions

* Testing any other state machine features (error handling, etc.)

* |tisrecommended to use a model based testing approach for
more complex state machines

testIDEA » 08 Chapter 9 » Summary

15

