
08

testIDEA

S T A T E - D E P E N D E N T C O D E
Objectives
At the end of this section, you will be able to

• Create a test for a state machine, where tests results depend on the state machine’s internal state

Testing

08

testIDEA

Contents

1 Concept of a state machine 3

2 Example for the state machine 4-6

3 Initialization of the state machine 7-8

4 Testing get-function 9

5 Testing state changes 10

6 Create final state 11

7 Overview test vectors 12

8 What about coverage? 13

9 Summary 14-15

S T A T E - D E P E N D E N T C O D E

testIDEA »

Call “trafficLight
Reset” function
again to ensure
that the state
machine can be
returned to its
initialized state.

Call “trafficLight
NextState“ to
move the state
machine to its
next
programmed
state.

Call “getTraffic
Light” to check
for correct
state.

Call “Create”
function, i.e.
the function
that initializes
the state
machine to its
starting state
(trafficLight
Reset)

A state machine is, by its very nature,
an object whose next state change is
dependent upon its current state.
Any unit testing platform for such
programming constructs must ensure
that this state information is
maintained between tests.

One recommend test strategy here is
a test framework using the CRUD
(Create, Read, Update, Release)
approach. This allows for testing code
that can have states and outcomes
that vary for the same function calls.

There are parallels here to the testing
of C++ that we saw in Unit 07. C++
had its class object that was
maintained across method calls
during testing; a state machine will,
likewise, need its state data
maintained across function calls.

1 CONCEPT OF A STATE MACHINE

308 Chapter 1 » Concept of a state machine

INIT STATE nx STATE nx

What has to be tested?

1 2 3 4

testIDEA »

The example code for this unit
represents the state changes of a
traffic light.

The different traffic light states are
defined in an enum. As mentioned
previously, this is preferable coding
strategy to using #define and
testIDEA is additionally able to access
these symbols for use in the tests.

2 EXAMPLE FOR THE STATE MACHINE

408 Chapter 2 » Example for the state machines

enum TrafficLightState {

STATUS_INIT,

STATUS_RED,

STATUS_RED_AMBER,

STATUS_GREEN,

STATUS_AMBER,

STATUS_ERROR_1,

STATUS_ERROR_2

};

static TrafficLightState _trafficLightState =

STATUS_INIT;

static TrafficLightState _trafficLightNextState =

STATUS_INIT;

static TrafficLight _trafficLight = LIGHT_ALL_OFF;

void trafficLightReset(void) {

_trafficLightState = STATUS_INIT;

_trafficLightNextState = STATUS_INIT;

}

testIDEA »

The State Machine has the following
transitions:

Init → Amber

Amber → Red

Red → Red_Amber

Red_Amber → Green

Green → Amber

Additionally, two error states are
defined providing a flashing amber
light in the event that an error should
occur.

2 EXAMPLE FOR THE STATE MACHINE

508 Chapter 2 » Example for the state machines

void __attribute__ ((noinline))

trafficLightNextState(void) {

_trafficLightState =

_trafficLightNextState;

switch (_trafficLightState) {

case STATUS_INIT:

_trafficLightNextState =

STATUS_AMBER;

break;

case STATUS_RED:

_trafficLightNextState =

STATUS_RED_AMBER;

break;

case STATUS_RED_AMBER:

_trafficLightNextState =

STATUS_GREEN;

break;

case STATUS_GREEN:

_trafficLightNextState =

STATUS_AMBER;

break;

...

...

case STATUS_AMBER:

_trafficLightNextState =

STATUS_RED;

break;

case STATUS_ERROR_1:

_trafficLightNextState =

STATUS_ERROR_2;

break;

case STATUS_ERROR_2:

_trafficLightNextState =

STATUS_ERROR_1;

break;

default:

_trafficLightState =

STATUS_ERROR_1;

_trafficLightNextState =

STATUS_ERROR_2; }}

testIDEA »

Testing state machines with testIDEA
is a little bit tricky. Depending on the
size of the state machine and the
project, a model-based testing
approach might be more
appropriate.

Our traffic light project has a modest
complexity and thus a very limited
number of test cases. Thus we can
demonstrate the testing of this state
machine quite simply just with
testIDEA.

2 EXAMPLE FOR THE STATE MACHINE

608 Chapter 2 » Example for the state machines

TrafficLight __attribute__

((noinline))

getTrafficLight(void) {

TrafficLight returnValue =

LIGHT_ALL_OFF;

switch (_trafficLightState) {

case STATUS_INIT:

/* Do nothing - return

default lights

off state */

break;

case STATUS_RED:

returnValue =

LIGHT_RED;

break;

case STATUS_RED_AMBER:

returnValue =

LIGHT_RED_AMBER;

break;

case STATUS_GREEN:

returnValue =

LIGHT_GREEN;

break;

case STATUS_AMBER:

if (_trafficLightState == STATUS_ERROR_1) {

returnValue = LIGHT_AMBER;

} else if

(_trafficLightState

== STATUS_ERROR_2) {

returnValue = LIGHT_ALL_OFF;

} else {

returnValue = LIGHT_AMBER; }

break;

default:

_trafficLightState = STATUS_ERROR_1;

_trafficLightNextState = STATUS_ERROR_2;}

return returnValue;}

testIDEA »

First of all we have to create the first
part of the testing framework:

We create an executed test case on
base test level for the initial state. In
our example this initial state is
created by the function
trafficLightReset.

3 INITIALIZATION OF THE STATE MACHINE

708 Chapter 3 » Initialisation of the state machines

Create first executed test on base test level to initialize state machine
→ trafficLightReset

testIDEA »

In this first test case we expect that
the traffic light is initialized in the
correct manner, e.g. that
STATUS_INIT is stored in the internal
variables of the state machine.

3 INITIALIZATION OF THE STATE MACHINE

808 Chapter 3 » Initialisation of the state machines

testIDEA »

The next step is to create a second
executed test vector at base test level
which is used to test the
getTrafficLight function.

To test this function we have to enter
the function name as well as the
expected value (STATUS_INIT).

4 TESTING GET-FUNCTION

908 Chapter 4 » Testing get-function

Create second executed test on base test level to ensure that get-function
returns expected values
→ getTrafficLight

testIDEA »

Next we create a base test for the
trafficLightNextState function, which
will not be executed, and the
accompanying derived tests with the
changing expected states.

By deriving these tests from a base
test, it makes it easier to modify or
replace this section should the state
machine functionality ever change in
the future.

5 TESTING STATE CHANGES

1008 Chapter 5 » Testing state changes

Create third (non executed) base test and derived tests to check
internal local variable status after each call
→ trafficLightNextState

testIDEA »

We will then create one more
executed test at base test level to set
the state machine into a final state.

In this example the final state is
moved into by a call to
trafficLightReset. This leaves the state
machine in its reset state.

6 CREATE FINAL STATE

1108 Chapter 6 » Create final state

Create fourth executed test on base test level to ensure that the state
machine can be returned to its initial state
→ trafficLightReset

testIDEA »

After all the test cases have been
created, the structure should look as
shown opposite.

7 OVERVIEW TEST VECTORS

1208 Chapter 7 » Overview test vectors

testIDEA »

These tests and this strategy most
likely provides close to a 100% code
coverage. However, the coverage of
the functionality is not fully
guaranteed. This is because we
haven't checked that we can reset
the state machine successfully at any
point in its operation, or that more
than one cycle of the state machine
can be achieved. This highlights the
challenges faced by those developing
Unit Tests.

iSYSTEM would recommend
evaluating a Model Based Testing
approach to test case generation to
ensure that such software is fully
tested. Such an approach is possible
using the software tools from
sepp.med GmbH, such as MBTsuite.

8 WHAT ABOUT TEST COVERAGE?

1308 Chapter 8 » What about coverage?

Close to a 100% code coverage,

but:

what about test coverage?
(reset possible at any point, more than one cycle, …)

Model Based Testing approach recommended
for more complex state machines

https://www.seppmed.de/en
https://www.seppmed.de/de/portfolio/mbtsuite/

08

testIDEA

SUMMARY

testIDEA »

9 SUMMARY

• The testing process for a low-complexity state machine
contains four steps:

• Testing the initialization of the state machine

• Testing any “getState” functions

• Testing the “state change” functions

• Testing any other state machine features (error handling, etc.)

• It is recommended to use a model based testing approach for
more complex state machines

08 Chapter 9 » Summary 15

