
09

testIDEA
Objectives
At the end of this section, you will be able to

• Explain the use cases for stubbing during unit tests

• List two alternative ways to stub hardware functionality using testIDEA

• Create a stub within testIDEA

During testing

S T U B B I N G H A R D W A R E

09

testIDEA

Contents

1 Working with stubs 3-5

2 Create base test 6

3 Set stub in base test 7-11

4 Create derived tests 12-14

4 Table view 15

5 Summary 16-17

S T U B B I N G H A R D W A R E

testIDEA »

When developing unit tests, it may
be the case that a function being
tested is dependent upon:

• Hardware that is not yet available.

• Software that has not yet been
written.

• An element that provides non-
deterministic data (e.g. a sensor).

In such cases, it is possible to ‘stub’
the section of affected code for the
purposes of testing.

This essentially means:

• Replacing the function call with
the injection of the data the caller
would have returned.

• Linking the function call to a
function especially written for
testing purposes.

1 WORKING WITH STUBS

309 Chapter 1 » Working with stubs

bool setDelay(void) {

bool returnValue = true;

unsigned int adcValue = 0;

adcValue = getADC();

if (adcValue >= 512) {

returnValue = false;

}

return returnValue;

}

int getADC(void) {

...

return adcValue;

}

testIDEA »

testIDEA can, solely for the purposes
of testing, be configured to artificially
call a C/C++ function that has been
written especially for testing.

The function to be used will need to
be available in the list of symbols of
the ELF-format file being testing. This
function will typically be written to
return deterministic values for a
sensor, but could be programmed to
perform any suitable task.

1 WORKING WITH STUBS

409 Chapter 1 » Working with stubs

boolean setDelay(void) {

boolean returnValue = true;

unsigned int adcValue = 0;

adcValue = getADC();

if (adcValue >= 512) {

returnValue = false;

}

return returnValue;

}

int getADC(void) {

...

return adcValue;

}

int myGetADC(void) {

...

return myAdcValue;

}

testIDEA »

Alternatively, testIDEA can be
configured to insert values from a
table into the caller’s variable.

In the example shown here, rather
than calling the function getADC(),
testIDEA simply inserts values in a
predetermined order into the caller’s
storage variable adcValue at each
execution of the call.

In this Unit we will be focusing on the
stubbing method shown here on this
slide.

It is important to remember that
using stubs will change the execution
time of the code. This should not be
an issue in the context of unit testing.

1 WORKING WITH STUBS

509 Chapter 1 » Working with stubs

boolean setDelay(void) {

boolean returnValue = true;

unsigned int adcValue = 0;

adcValue = getADC();

if (adcValue >= 512) {

returnValue = false;

}

return returnValue;

}

testIDEA »

In the example shown here the
function setDelay() is directly
dependent on the result from a call
to the hardware dependent function
getADC().

Good abstraction of code would
normally see the result from the ADC
measurement being passed into the
setDelay() function, rather than
acquiring the value through a
function call in the function itself.
However, for the purposes of
demonstration, this example code is
easy to follow.

1 WORKING WITH STUBS

609 Chapter 1 » Working with stubs

unsigned int getADC(void) {

unsigned int returnValue = 0;

returnValue = analogRead(3);

return returnValue;

}

bool setDelay(void) {

bool returnValue = true;

unsigned int adcValue = 0;

adcValue = getADC();

if (adcValue >= 512) {

returnValue = false;

}

return returnValue;

}

testIDEA »

The setDelay() function returns false
when the ADC returns a value of 512
or greater. In order to test this
functionality we will need to force
the tests to insert suitable,
deterministic values into the variable
adcValue instead of calling the
hardware-dependent function
getADC().

Using the boundary method seen
before, it would be recommended to
test values of 0, 1, 511, 512 and 513,
with expected responses being as
shown in the table opposite.

1 WORKING WITH STUBS

709 Chapter 1 » Working with stubs

unsigned int __attribute__ ((noinline)) getADC(void) {

unsigned int returnValue = 0;

returnValue = analogRead(3);

return returnValue;

}

boolean __attribute__ ((noinline)) setDelay(void) {

boolean returnValue = true;

unsigned int adcValue = 0;

adcValue = getADC();

if (adcValue >= 512) {

returnValue = false;

}

return returnValue;

}

Input
Expected
Response

0 True

1 True

511 True

512 False

513 False

testIDEA »

As seen previously, we start by
creating a non-executable base class.

The setDelay() function will then be
tested by for a pass/fail outcome by
comparing the return value with 1 or
0 (true and false). As this is test-
dependent, we will leave the
Expected result field in the base test
empty, as is shown here.

2 CREATE BASE TEST

809 Chapter 2 » Create base test

testIDEA »

After choosing the function we have
to create a Stub in the Base Test.

Switch to the Stubs form.

3 SET STUB IN BASE TEST

909 Chapter 3 » Set stub in base test

1

1

testIDEA »

After choosing the function we have
to set a Stub in the Base Test.

Switch to the Stubs form.

Next, add the stubbed
function by clicking the plus
symbol as shown.

3 SET STUB IN BASE TEST

1009 Chapter 3 » Set stub in base test

1 2

1

2

testIDEA »

After choosing the function we have
to set a Stub in the Base Test.

Switch to the Stubs form.

Next, add the stubbed
function by clicking the plus
symbol as shown.

The function getADC() is then
added as the function to be
stubbed.

3 SET STUB IN BASE TEST

1109 Chapter 3 » Set stub in base test

1

3

2

3

testIDEA »

As the Return variable name,
adcValue is entered. This is the
variable we want to overwrite
using the stub functionality.

3 SET STUB IN BASE TEST

1209 Chapter 3 » Set stub in base test

4

4

testIDEA »

Each time the stub function is
activated the defined action
should be triggered.
Select the Plus symbol in the
assign column and select the
variable which should be
overwritten by the stub – in this
case adcValue.

The actual value to be inserted
will be defined in each derived
test.

3 SET STUB IN BASE TEST

1309 Chapter 3 » Set stub in base test

5

5

testIDEA »

Finally, in the Meta form,
uncheck the Execute option.

The base test is now complete and
we can continue by creating derived
tests.

3 SET STUB IN BASE TEST

1409 Chapter 3 » Set stub in base test

6

6

testIDEA »

Create a new derived test

The derived test inherits almost
everything from the base test. Only
the Expected result and the Stub
need to be configured.

For our first executable test the value
‘0’ will be returned from the stubbed
function, resulting in the setDelay()
function returning ‘1’ or true.

After selecting the base test
and selecting Test -> New
Derived Test... the Expected
result value can be defined in
the wizard as shown here.

Once complete, the Finish
button is clicked to close the
dialog.

4 CREATE DERIVED TESTS

1509 Chapter 4 » Create derived test

1
1

testIDEA »

Now we have to add the information
for the stub for this test. Select the
Stub form again

Click the Inherit check-box
twice to change the status to
unchecked.
The input settings remain as
defined but the fields are now
editable.

4 CREATE DERIVED TESTS

1609 Chapter 4 » Create derived test

2

2

testIDEA »

Set the stub value:

Now the desired value for
adcValue has to be entered for
this test.

4 CREATE DERIVED TESTS

1709 Chapter 4 » Create derived test

3

3

testIDEA »

Set the stub value:

Now the desired value for
adcValue has to be entered for
this test.

Finally, enter the name of
variable to be changed.

Upon completion of this first
executable test, the remaining tests
can be easily modified using the table
view.

4 CREATE DERIVED TESTS

1809 Chapter 4 » Create derived test

3

3

4
4

testIDEA »

By switching to Table view, further
test vectors can be easily created.

By utilizing boundary testing method,
the final collection of test vectors
should look similar to that shown
here.

5 TABLE VIEW

1909 Chapter 5 » Table view

09

testIDEA

SUMMARY

testIDEA »

6 SUMMARY

• To ease or simplify testing, functions that are hardware
dependent or are not yet written can be stubbed.

• Stubbing allows deterministic data to be inserted into a
variable for the purposes of testing.

• Alternatively, function calls could be linked to alternate
function written in C/C++.

09 Chapter 6 » Summary 21

