During testing

STUBBING HARDWARE

Objectives

At the end of this section, you will be able to

» Explain the use cases for stubbing during unit tests

* List two alternative ways to stub hardware functionality using testIDEA

* Create a stub within testIDEA

Contents

STUBBING HARDWARE

Ul A B W N

Working with stubs
Create base test

Set stub in base test
Create derived tests
Table view

Summary

3-5

7-11
12-14
15
16-17

T WORKING WITH STUBS

When developing unit tests, it may bool setDelay(void) {
be the case that a function being bool returnValue = true;
tested is dependent upon: unsigned int adcValue = 0;
Hardware that is not yet available. adcValue = getADC(); _ > int getADC (void)
N~
Software that has not yet been . e
written. if (adcValue >= 512) { return adcValue;
returnValue = false; }

An element that provides non- }
deterministic data (e.g. a sensor).

o . . , return returnValue;
In such cases, it is possible to ‘stub }

the section of affected code for the
purposes of testing.

This essentially means:

e Replacing the function call with
the injection of the data the caller
would have returned.

Linking the function call to a
function especially written for
testing purposes.

testIDEA » 09 Chapter 1 » Working with stubs

T WORKING WITH STUBS

testIDEA can, solely for the purposes
of testing, be configured to artificially
call a C/C++ function that has been
written especially for testing.

The function to be used will need to
be available in the list of symbols of
the ELF-format file being testing. This
function will typically be written to
return deterministic values for a
sensor, but could be programmed to
perform any suitable task.

boolean setDelay(void)

{

boolean returnValue true;
unsigned int adcValue = 0;
adcValue = getADC(); _ int getADC (void)
N
if (adcValue >= 512) { return adcValue;
returnValue = false; }

}

return returnValue;

N

return myAdcValue;

testIDEA » 09 Chapter 1 » Working with stubs

“~ int myGetADC (void)

{

T WORKING WITH STUBS

Alternatively, testIDEA can be
configured to insert values from a
table into the caller’s variable.

In the example shown here, rather
than calling the function getADC(),
testIDEA simply inserts values in a
predetermined order into the caller’s
storage variable adcValue at each
execution of the call.

In this Unit we will be focusing on the

stubbing method shown here on this
slide.

It is important to remember that
using stubs will change the execution
time of the code. This should not be
an issue in the context of unit testing.

boolean setDelay(void) {

boolean returnValue = true;
unsigned int adcValue = 0;

adcValue = getADC(); _

N~

if (adcValue >= 512) {
returnValue = false;

return returnValue;

testIDEA » 09 Chapter 1 » Working with stubs

retValMame

assignSteps

0

+
®

assign

+

adclalue

+
®

Pt et P e e

[

adeValue
adeValue
adeValue
adeValue
adeValue

adcWalue

=

Y B
i 512
i 513

T WORKING WITH STUBS

In the example shown here the
function setDelay() is directly
dependent on the result from a call
to the hardware dependent function
getADC().

Good abstraction of code would
normally see the result from the ADC
measurement being passed into the
setDelay() function, rather than
acquiring the value through a
function call in the function itself.

However, for the purposes of
demonstration, this example code is
easy to follow.

unsigned int getADC (void) {
unsigned int returnValue = 0;

returnValue = analogRead(3);

return returnValue;

}

bool setDelay (void) {
bool returnValue = true;
unsigned int adcValue = 0;

adcValue = getADC() ;

if (adcValue >= 512) {
returnValue = false;

}

return returnValue;

testIDEA » 09 Chapter 1 » Working with stubs

T WORKING WITH STUBS

The setDelay() function returns false
when the ADC returns a value of 512
or greater. In order to test this
functionality we will need to force
the tests to insert suitable,
deterministic values into the variable
adcValue instead of calling the
hardware-dependent function
getADC().

Using the boundary method seen
before, it would be recommended to

test values of 0, 1, 511, 512 and 513,
with expected responses being as
shown in the table opposite.

unsigned int attribute ((noinline)) getADC (void)
unsigned int returnValue = 0;

returnValue = analogRead(3);

return returnValue;

}

boolean attribute ((noinline)) setDelay(void) {
boolean returnValue = true;
unsigned int adcValue = 0;

adcValue = getADC() ;

if (adcValue >= 512) {

returnValue = false; True

/ 1 True
return returnValue; 511 True

/ 512 False
513 False

testIDEA » 09 Chapter 1 » Working with stubs

Expected
Response
0

2 CREATE BASE TEST

As seen previously, we start by
creating a non-executable base class.

The setDelay() function will then be
tested by for a pass/fail outcome by
comparing the return value with 1 or
O (true and false). As this is test-
dependent, we will leave the
Expected result field in the base test
empty, as is shown here.

%] Mew test case wizard

O X
. @
New test case wizard Y
Enter basic test case information. Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. :
Scope: COiUnit O System (®) Default (Unit) [+] Auto generate test ID
Core ID: ~
Function: | setDeIaﬂ I w |
| unsigned char () |
Parameters: | |
Expected result

() Default expression for function return value test

dsys_rv ==

(®) Custom expression and function return value name

Expression: |

Ret. val. name: |

[

< Back

| Net> [Fnsh] cance

testIDEA » 09 Chapter 2 » Create base test

3 SET STUB IN BASE TEST

After choosing the function we have
to create a Stub in the Base Test.

@ Switch to the Stubs form.

iT “bsc0002-05-exam ple.iyaml 8@]

[z Meta
Function
Persistent variables
Variables
Pre-conditions
Expected
| & Stubs |
i User Stubs
J& Test Points
w i Analyzer

L LR R

w & Coverage
- Statistics
w & Profiler
[Code areas
[Data areas
& Trace
HIL
Scripts
Options
Dy run

EEEEE

Diagrams

[®] Inherit

“ | Stubbed functions

s

&

Form Table|

testIDEA » 09 Chapter 3 » Set stub in base test

3 SET STUB IN BASE TEST

After choosing the function we have

iT “bsc0002-05-exam ple.iyaml 8@]

to set a Stub in the Base Test.

= Meta

Function
Persistent variables
Variables
Pre-conditions
Expected

| & Stubs |
@ Next, add the stubbed ¥ User Stubs @

wEEERT

3 8 =18 J& Test Points
function by clicking the plus v)ty
symbol as shown. v J Coverage

- Statistics
w & Profiler

[Code areas
[Data areas
& Trace
HIL
Scripts
Options
Dy run

EEEEE

Diagrams

[®] Inherit

2

| Stubbed functions

=

5

2)

Form Table|

testIDEA » 09 Chapter 3 » Set stub in base test

10

3 SET STUB IN BASE TEST

After choosing the function we have

to set a Stub in the Base Test. Bee: &
Stubbed func.: | getADC &)
20 17 getADC | |
o
s active: (O Mo (O Yes (@) Default (Yes) ' @
Is customact: (O No (JYes (®) Default (No)
Parameters: | |i |E|
Ret. var. name: | |i
Script func.: |
b i i
Hits: | <= | | <= |
Logging
Before assignments: | |i
The function getADC() is then After assignments: | =
added as the function to be
Actons when s s i
stubbed.
@ expect T| assign +| scriptParams +| next | ~
v E] v
< > £ >

testIDEA » 09 Chapter 3 » Set stub in base test 11

3 SET STUB IN BASE TEST

As the Return variable name,
adcValue is entered. This is the Lk

; ; d ~ "] stubbedfunc. |getADC G
variable we want to overwrite u:gmc_ eene :9 ||
. . . -)
using the stub functionality. + _
|s active: (OJMe () Yes (@) Default (Yes) '
|s custom act: (U Me () Ves (@) Default (No) '
Parameters: | |i |E|
Ret. var. name: | adc‘u"aluel T '
Script func. Name of variable used to store stub return value, This name is needed in assignment
table below, to specify the value to be returned by stubbed
a Examples:
Logging retVal .
__Before assionments: l i
After assignments: | | i
Actions when stub is hit:
@ expect | assign +| scriptParams +| next | "
%
v v
L4 > £ >

testIDEA » 09 Chapter 3 » Set stub in base test 12

3 SET STUB IN BASE TEST

Each time the stub function is
activated the defined action
should be triggered.

Select the Plus symbol in the
assign column and select the
variable which should be
overwritten by the stub —in this
case adcValue.

The actual value to be inserted
will be defined in each derived
test.

[®] Inherit *

-

S0 ;' getADC | |
& _
Is active: (O No () Yes (@) Default (Yes) '
Is custom act: () No () Yes (@) Default (No)
Parameters: | |i |E|
Ret. var. name: | adcValue
Scriot func.: |
Enter identifier name X)
|dentifier: adcValue I}
=
[ok] cance |
Actions when stub is hit:
@ expect "'- scriptParams +| next | -
To: |
@ N
v v
< > £ >
testIDEA » 09 Chapter 3 » Set stub in base test 13

3 SET STUB IN BASE TEST

Finally, in the Meta form,

LT “bsc0002-06-test.iyam| 23

uncheck the Execute option.

[Meta

Function
Persistent variables
Variables
Pre-conditions
Expected

Stubs

User Stubs

Test Points
Analyzer

The base test is now complete and
we can continue by creating derived
tests.

(FEETEEERT

J Coverage
& Statistics
J Profiler
- Code areas
& Data areas
- Trace
HIL
Scripts

£

Options
Cry run

EEERTE

Diagrams

[] Execute ' @

Scope: Unit O System (®) Default (Unit)

ID: lo

[m] Inherit ' [] View / Edit

Description:

Result comment:

Tags:

Form | Table |

testIDEA » 09 Chapter 3 » Set stub in base test 14

4 CREATE DERIVED TESTS

Create a new derived test

The derived test inherits almost
everything from the base test. Only
the Expected result and the Stub
need to be configured.

For our first executable test the value
‘0" will be returned from the stubbed
function, resulting in the setDelay()
function returning ‘1’ or true.

@ After selecting the base test
and selecting Test -> New
Derived Test... the Expected
result value can be defined in
the wizard as shown here.

Once complete, the Finish
button is clicked to close the
dialog.

%] Mew derived test case wizard O >
.]
MNew test case wizard Y
Enter basic test case information, Button 'Mext’ is enabled only for unit tests if function name is defined and symbols are loaded. L
>

Scope: (O Unit () System (@) Default (Unit) [~] Auto generate test ID
Core Dt w

Function: | w |
Parameters: | |

Expected result

(®) Default expression for function return value test

dsysv == [(1)

Custorn expression ang . _ .
O : in section 'Expected’. For example, if you enter:

Expression: 10

expression '_isys_rv == 10" will be auternatically generated. This feature can only be used for
scalar types (char, int, ...). For complex types specify Ret. val. name and expression below.
Additional expressions can later be entered in section "Variables',

Ret. val. name:

Enter expected function return value. This value will be used to automatically generate expression '_isys_rv == <valuex’

Finish

Cancel

testIDEA » 09 Chapter 4 » Create derived test

15

4 CREATE DERIVED TESTS

Now we have to add the information

for the stub for this test. Select the

Stub form again

@ Click the Inherit check-box
twice to change the status to
unchecked.
The input settings remain as
defined but the fields are now
editable.

Stubbed func.: | getADC I5=}
| unsigned long () |
Is active: (JMe (O VYes (®) Default (Yes)

Is custorn act: (Mo () Yes (@) Default (Mao) '

Parameters: ‘ |i IEI

Ret. var. name; ‘ adcValue |I

Script func.: ‘ | i
T <= | | |i
Logging
Before assignments: | |i l@l
After assignments: | i W
Dialog | Results .
scriptParams * | next | 2

testIDEA » 09 Chapter 4 » Create derived test 16

4 CREATE DERIVED TESTS

Inherit '
Set the stub value: [Jinherit N
| Stubbedfunc: | getADC 5]
Now the desired value for | unsigned long 0 |
adcValue has to be entered for Is active: ONo O VYes (@ Default (Yes) '

this test.

Is custorn act: (Mo () Yes (@) Default (Mao) '

Parameters: ‘ |i IEI

Ret. var. name; ‘ adcValue |I

Script func.: ‘ | i
T <= | | |i

Logging

Before assignments: | |i l@l

After assignments: |

Dialog | Results .

el

testIDEA » 09 Chapter 4 » Create derived test 17

4 CREATE DERIVED TESTS

[Inherit ' N
| Stubbedfunc: | getADC 5]
| unsigned long () |
|s active: (CNe (O Ves (@ Default (Yes) '

Is custorn act: (Mo () Yes (@) Default (Mao) '

Parameters: | ; IEI
[4| Enter identifi >< |
@ Finally, enter the name of ~4| Enter identifier name

variable to be changed. @ I}

|dentifier: adcWalue

Upon completion of this first i
executable test, the remaining tests ok || Cancel | |

can be easily modified using the table : : K]
view.

Actions when stub is hit: | Dialog | Results ...

el

testIDEA » 09 Chapter 4 » Create derived test 18

5 TABLE VIEW

By switching to Table view, further

. = - @
test vectors can be easily created. RE|TIG func aszen
[] k= Meta func expressions
By utilizing boundary testing method, [k= Function retValName assignSteps 0
the final collection of test vectors Ei poentveriables °
o o arliables - +
should look similar to that shown Ol 4 Pre-conditions assign
+
here. [& Expected _ . i adcValue |
[] = Stubs 0 |' setDelay getADC ~ " adcValue =
[UserStubs .15 setDelay ' getADC ~ ' adcValue ‘0 = isys_rw==
[} TestPoints 227 setDelay ' getADC ~ ' adcValue ' = sys_w==1
v [F Analyzer 23 setDelay ' getADC ~ ' adcValue e S jsysv==
¥ DE;‘“’;;S; S 4} setDelay ' getADC ~ ' adcValue ' 512 S0 jsys rv==
v [} F"rl:bfihe:rI - !i solii | getADC ~ ' adcValue ' 513 = isysv==0
]}~ Code areas -
| I o T

testIDEA » 09 Chapter 5 » Table view

0S

testi JEA

6 SUMMARY

e To ease or simplify testing, functions that are hardware
dependent or are not yet written can be stubbed.

* Stubbing allows deterministic data to be inserted into a
variable for the purposes of testing.

* Alternatively, function calls could be linked to alternate
function written in C/C++.

testIDEA » 09 Chapter 6 » Summary

21

