Testing

REGISTERS AND PERIPHERALS

Objectives

At the end of this section, you will be able to

* Useregister contents as part of expected pass/fail testing outcomes

Testing

REGISTERS AND PERIPHERALS

1 Testing the MCU's peripherals
2 Testing peripherals
Navigate to register

Watch register's memory
Test cases

3 Summary

3-4

5-7

()]

8-9

1 TESTING THE MCU'S PERIPHERALS

In this unit we will examine how to void loop () {

us.e the content’s of the . digitalWrite (13, HIGH); // turn the LED on (HIGH is the voltage level)
microcontroller’s Special Function delay (500) ; // wait for a second

Registers (SFRs) as the Expected value digitalWrite (13, LOW); // turn the LED off by making the voltage LOW
Of a test'DEA test case delaY(SOO) 7 // wait for a second

Such tests could be considered to
digress towards Integration Testing
rather than pure Unit Testing.
However, in the world of embedded
development and working close to
the hardware, such testing is

required, often when testing the
functionality of peripheral drivers.

Here we will test that the function
digitalWrite() works correctly, the
function we have been using to turn
a specified digital GPIO pin on or off.

testIDEA » 11 Chapter 1 » Testng the MCU'’s peripherals 3

1 TESTING THE MCU'S PERIPHERALS

One potential method would be to Concept
create a hardware-in-the-loop (HIL)
platform and check that the
associated GPIO pin actually acquires
the expected value. This would,
however, require the GPIO to be
connected to an IOM input of the

BlueBox™. winIDEA T winIDEA T winIDEA
Instead we will execute the function @

and then check that the register used
to control the GPIO pin has been

Execute Navigate to register Watch changes in
function of GPIO pin Register’s memory

changed appropriately.

Create Test Cases <
testIDEA

testIDEA » 11 Chapter 1 » Testng the MCU'’s peripherals A

2 TESTING PERIPHERALS - NAVIGATE TO REGISTER

In the winIDEA workspace, one way
to examine the status of the GPIO pin
that controls the LED is using the
Special Function Registers (SFR)
window.

The LED is attached to a pin under
the control of register PIOB_ODSR, as
shown in the screenshot opposite.

From the SFR window it is possible to
determine the address of this

register in memory, namely
Ox400E1038.

[bsc0002-06 - winIDEA - [C:\Users\babkinje\Desktop\; &\ Exercise DB\src\ exercise 0B.cpp] - X

File Edit View Hardware Debug FLASH Test Plugins Tools Window Help -8 x
D “ exercise_06.cpp 4 wx
x [Filter |
= exampleODsketch elf %
d £
*
Ga [
i<]
EY =
5 L
“““““ =
- & Symbols ™
w b ee o0
Value Type Address

Build | Find In Files | Tools | Script | Progress @ Locals @ this

Name value ﬂ‘$|“"ﬁ3|
PIOB
x| | Address. Data Disas... Registers
l < PIOB_CODR i P8 P8 e 400E1034 Clear Output Data Reagister

-~ m_

l < PIOB_PDSR 400E103C Pin Data Status Register

l @ PIOB_IER 5 8 3 3 = = 400E1040 Interrupt Enable Register

P P2 P4 PS5 P§ Pg

© PIOB_IDR 400E1044 Interrupt Disable Register

[#- & PIOB_IMR e & e B A3 A 400E1048 Interrupt Mask Register

o POBISR P1 P3 P4 P5FE P8 400E104C Interrupt Status Register

Ln1, Col1 OVR OFFLINE

testIDEA » 11 Chapter 2 » Testing peripherals - Navigate to register 5

2 TESTING PERIPHERALS - WATCH REGISTER'S MEMORY

The address of the register can be Watch TR
added to the Real-time Watch o
: : s B pdE | @ E v
window. You will see the value
Mame Value Type Address

updating as the code executes. The
register can be accessed in two ways:

:0x400E1038,u — the address and
data type (updates in “real time”)

@PIOB_ODSR — the name of the
register associated with the pin being
controller (doesn't update in real

&d Watchl & Watchd &d Rt.\Watchi &d Rt.\Watch?

time by default — see following slide)

We see that when the LED is on,
PIOB ODSR == 0x08000000,
and when off itis 0x00000000.

Be careful when adding registers in the “Real-time Watch” window as sometimes the
mere act of reading/writing the register can cause its contents to change, such as a
register that clears its bits after having been read.

testIDEA » 11 Chapter 2 » Testing peripherals — Watch register’'s memory 6

2 TESTING PERIPHERALS - WATCH REGISTER'S MEMORY

This default functionality regarding Options <
real time updates for SFRs can be
. . Environment Dizassembly SFR Window Callstack Window Terminal
Tools -> Options dialog and change
. Update Memary Access
the Memory Access option to Real - @ Monitor
Time. i) All registers (_) Real Time {f avaiable)
Mote: Realtime access / update
i of SFRs is not recommended.
D{;;pll‘da:meﬂc valuss Some register’s state is affected by
= reading.
(®) Description A perodic refresh by the debugger
() Description with value can dismupt the regular application
[Display sh behaviour.
isplay shaort names
[] Display radix prefix
Abort refresh
Sub-register display [Full, after s
M
g Vaues 1 Group, after s
(® Names and values [+] Group i access emor occurs
[ok]| Canced || Heb |

testIDEA » 11 Chapter 2 » Testing peripherals — Watch register’'s memory 7

2 TESTING PERIPHERALS - TEST CASES

Testing the digitalWrite() function in
testIDEA is quite straightforward.
Simply create a test that calls the
function with the required
parameters (pin number 13 and ‘0’ or
‘1’ for the logic level desired).

In the “Expected” field we simply
mask for the desired bit in the target
register and compare the outcome
with the expected outcome for the
test to be considered to have passed.

This looks as shown opposite
(testIDEA view is in Table mode).

@ func assert
func params * EXpressions
0 o1 0 :
" digitalWrite ‘13 Y1 0T T 2 (@PIOB_ODSR & (xD8000000) == 0:02000000
' digitalWrite ‘13 ‘o " T 2 (@PIOB_ODSR & (x08000000) == 0

testIDEA » 11 Chapter 2 » Testing peripherals — Test cases

=

11

testi JEA

3 SUMMARY

* testIDEA can also use the contents of registers, rather than
variables, for its Expected values.

e Tests pass or fail dependent on the results found in the
peripheral registers.

e Approach can be used to develop tests for microcontroller
peripheral drivers.

testIDEA » 11 Chapter 3 » Summary

10

