

This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.
Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.
All trademarks are property of their respective owners.

iSYSTEM is an ISO 9001 certified company

iSYSTEM EB tresos Safety OS 2.x Thread
Profiling Application Note

Publish Date: 07/17/2018

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

1 of 36 Application Note

www.isystem.com

Table of Contents

1 Introduction .. 2

1.1 OS Threads ... 2

2 Timing Analysis Concepts ... 7

2.1 Overview .. 7
2.2 OS Running Task Profiling without Code Instrumentation .. 9
2.3 OS Thread-State Profiling by means of Code Instrumentation.. 10
2.4 OS Thread-State Profiling without Code Instrumentation... 11

3 Running Thread/Task Profiling ... 12

3.1 Operating System Configuration .. 12
3.2 iSYSTEM Profiler XML ... 12
3.3 Analyzer Configuration .. 13
3.4 Profiler Display ... 14
3.5 Extraction of current Task Object in a running Thread .. 15

4 Thread-State Profiling by means of Code Instrumentation .. 17

4.1 Overview .. 17
4.2 Required Code Instrumentation .. 17
4.3 Operating System Configuration .. 19
4.4 iSYSTEM Profiler XML ... 20
4.5 Analyzer Configuration .. 21
4.6 Profiler Display ... 22

5 Thread-State Profiling without Code Instrumentation ... 23

5.1 Overview .. 23
5.2 Thread Control/Status Structures .. 23
5.3 Operating System Configuration .. 25
5.4 iSYSTEM Profiler XML ... 26
5.5 Analyzer Configuration .. 27
5.6 Profiler Display ... 28
5.7 Hardware Trace Configuration Options for various Processor Architectures 29

6 Inspectors ... 31

6.1 Task Metric Analysis ... 31

7 BTF Export ... 34

8 Technical Support ... 36

8.1 Online Resources ... 36
8.2 Contact ... 36

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

2 of 36 Application Note

www.isystem.com

1 Introduction

This application note describes three approaches for OS scheduling analysis on EB tresos Safety OS.
EB tresos Safety OS is a micro-kernel based OS and thus does not follow the approaches known from
classic AUTOSAR OS (i.e. OSEK) implementations.
Tasks and ISR2 objects are all managed by EB tresos Safety OS as threads. The OS kernel operates in
Supervisor mode, whereas the OS threads may run in (lower privilege) User mode or also Supervisor
mode of the CPU.
The memory protection is based on OS objects and OS applications. Each OS object or OS application
has its own memory region, protected by means of the hardware memory protection unit (MPU) of
the processor. In addition, the kernel itself has its own protected memory region. For more information
about EB tresos Safety OS, please refer to the product documentation provided by Elektrobit.

1.1 OS Threads

A thread comprises an execution context for various OS objects. The OS manages several types of
threads such as kernel threads, task threads or ISR threads. A thread also represents a schedulable
entity managed by the OS scheduler. Task threads represent user-defined task, i.e. resemble the tasks
of OSEK-compliant AUTOSAR OSes.
Multiple OS objects may execute within the same thread context, e.g. multiple user tasks may share
the same task thread. However, typically a one-to-one mapping of user tasks to task thread is applied.

Figure 1: EB tresos Safety OS Thread-State Model

EB tresos Safety OS defines the following thread state enumeration type:

\include\private\Mk_thread.h:

enum mk_threadstate_e

{ MK_THS_IDLE = 0,

 MK_THS_READY = 1,

 MK_THS_RUNNING = 2,

 MK_THS_NEW = 3,

};

Listing 1: Thread-State Enumeration Type

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

3 of 36 Application Note

www.isystem.com

EB tresos Safety OS manages the following objects which can execute within an OS thread:

\include\public\Mk_public_types.h:

enum mk_objecttype_e

{

 MK_OBJTYPE_KERNEL, /* Objects belonging to the microkernel */

 MK_OBJTYPE_TASK, /* Task objects belonging to the user */

 MK_OBJTYPE_ISR, /* ISR objects belonging to the user */

 MK_OBJTYPE_QMOS, /* Objects belonging to the QM-OS */

 MK_OBJTYPE_QMOSISR, /* ISR objects belonging to the QM-OS */

 MK_OBJTYPE_SHUTDOWNHOOK, /* A shutdown-hook */

 MK_OBJTYPE_ERRORHOOK, /* An error-hook */

 MK_OBJTYPE_PROTECTIONHOOK, /* The protection-hook */

 MK_OBJTYPE_TRUSTEDFUNCTION, /* A trusted function */

 MK_OBJTYPE_UNKNOWN /* Must be last */

};

Listing 2: Thread Type Enumeration Type

In the sample shown below, the OS maintains an array of mk_thread_t objects. Each element contains
status information for each task thread, i.e. threads that are used to run user tasks. The sample below
implements six task threads on core 0 (Error! Reference source not found.) and one of core 1 (Error! Re
ference source not found.).

Figure 2: Core 0 Task Thread Array

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

4 of 36 Application Note

www.isystem.com

Figure 3: Core 1 Task Thread Array

The profiler timelines in Error! Reference source not found. show a trace of the currently running t
hread on two cores. Both timelines are based on the same trace recording, but display different time
spans. The upper timeline is zoomed in at the location of the blue and yellow markers of the lower
timeline.

Figure 4: Sample Profiler Timeline (Dual-Core Running Thread)

A complete list of all user tasks, covering all cores, can be found in the array MK_taskCfgTable[] (see
Error! Reference source not found.). The element MK_taskCfgTable[n].thread contains a pointer to the c
orresponding task thread MK_cX_taskThreads[m] element.
For instance, the element MK_taskCfgTable[4].thread contains a pointer to the corresponding task
thread MK_c0_taskThreads[2] element (see Error! Reference source not found.).

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

5 of 36 Application Note

www.isystem.com

Figure 5: MK_taskCfgTable Array

Figure 6: MK_c0_taskThreads Array

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

6 of 36 Application Note

www.isystem.com

However, as mentioned earlier, it is possible that multiple user tasks share the execution context of
the same task thread, i.e. multiple MK_taskCfgTable[] elements refer to the same MK_cX_taskThreads[]
element.
The profiler timeline below shows a sample configuration where the user tasks SchMComTask_5ms
and SchMComTask_10ms execute within the task thread 4.

Figure 7: Multiple User Tasks executing within the same Task Thread context

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

7 of 36 Application Note

www.isystem.com

2 Timing Analysis Concepts

2.1 Overview

Timing analysis of EB tresos Safety OS cannot be accomplished purely by standard methods based on
an ORTI file generated by EB tresos Studio.
The EB tresos Studio does in fact generate an ORTI file also for EB tresos Safety OS. A concept for
running task tracing (RUNNINGTASK) is not provided, instead only a vendor-specific extension is
supported for running thread tracing (vs_RUNNINGTHREAD).
The enumeration vs_RUNNINGTHREAD lists all objects running within threads, including all user tasks,
isrs and kernel threads. However, the OS object to be used for identifying the currently running thread
is not suitable for hardware-based tracing as it uses multiple memory locations referenced by a
pointer.

os.orti file:

OS

{

 ENUM [

 "NO_THREAD" = 0x0,

 "Cyclic2C1" = "MK_taskCfgTable[0].threadCfg.name",

 "Cyclic2C2" = "MK_taskCfgTable[1].threadCfg.name",

 "InitTask" = "MK_taskCfgTable[2].threadCfg.name",

 "Cyclic" = "MK_taskCfgTable[3].threadCfg.name",

 "Loop" = "MK_taskCfgTable[4].threadCfg.name",

 "Task_St1" = "MK_taskCfgTable[5].threadCfg.name",

 "Task_St2" = "MK_taskCfgTable[6].threadCfg.name",

 "Os_Counter_STM0_T0" = "MK_isrCfgTable[0].threadCfg.name",

 "mk_boot_thread_core0" = "MK_bootThreadConfig[0]->name",

 "mk_init_thread_core0" = "MK_initThreadConfig[0]->name",

 "mk_idle_thread_core0" = "MK_idleThreadConfig[0]->name",

 "mk_shutdown_thread_core0" = "MK_shutdownThreadConfig[0]->name",

 "mk_aux1_thread_core0" = "MK_aux1Thread[0]->name",

 "mk_aux2_thread_core0" = "MK_aux2Thread[0]->name",

 "mk_qmos_thread_core0" = "MK_qmosThreadConfig[0]->name",

 "mk_protection_hook_thread_core0" = "MK_protectionHookThreadConfig[0]->name",

 "mk_error_hook_thread_core0" = "MK_errorHookThreadConfig[0]->name",

 "mk_boot_thread_core1" = "MK_bootThreadConfig[1]->name",

 "mk_init_thread_core1" = "MK_initThreadConfig[1]->name",

 "mk_idle_thread_core1" = "MK_idleThreadConfig[1]->name",

 "mk_shutdown_thread_core1" = "MK_shutdownThreadConfig[1]->name",

 "mk_aux1_thread_core1" = "MK_aux1Thread[1]->name",

 "mk_aux2_thread_core1" = "MK_aux2Thread[1]->name",

 "mk_qmos_thread_core1" = "MK_qmosThreadConfig[1]->name",

 "mk_protection_hook_thread_core1" = "MK_protectionHookThreadConfig[1]->name",

 "mk_error_hook_thread_core1" = "MK_errorHookThreadConfig[1]->name"

] vs_RUNNINGTHREAD[], "Running thread identification";

};

OS XYZ

{

 vs_RUNNINGTHREAD = "MK_c0_coreVars.currentThread->name";

};

Listing 3: Sample ORTI file generated by EB tresos Studio

Each element of the vs_RUNNINGTHREAD enumeration maps a thread name (e.g. Task_St1) with an
address of the MK_taskCfgTable array element, containing a string of the thread object name (e.g.
MK_taskCfgTable[5].threadCfg.name).
In other words, the pointer MK_c0_coreVars.currentThread->name points to a name string which is a sub-
element of a MK_taskCfgTable[n].threadCfg element associated with a user task n. This relation is
depicted in Error! Reference source not found..

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

8 of 36 Application Note

www.isystem.com

Figure 8: Sample MK_c0_coreVars.currentThread->name, pointing to MK_taskCfgTable[5]->name (Task_St1)

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

9 of 36 Application Note

www.isystem.com

2.2 OS Running Task Profiling without Code Instrumentation

OS running task profiling is based on tracing a global OS data object which contains status information
about the currently running thread. As mentioned earlier these threads may either be kernel threads,
user threads or ISR threads.

The core-specific global variable, e.g. MK_c0_coreVars.currentThread, contains a pointer to an element
of a mk_thread_t type array.

Data Object pointed to by
MK_cX_coreVars.currentThread

Description

MK_cX_taskThreads[] user task thread element of core X

MK_cX_isrThreads[] user ISR2 thread element of core X

MK_cX_auxN_Threads[] kernel thread elements (aux1/aux2) of core X

MK_cX_idleThread Idle thread of core X

In case multiple user tasks are mapped into a task thread, winIDEA Analyzer Inspectors can be used to
derive the currently running user task. However, this requires that, in addition to the currently running
thread, also the currently active object of the corresponding thread is traced
(MK_cX_taskThreads[n].currentObject).

Figure 9: currentObject Element of the Core 0 Task Thread 3 (MK_c0_taskThread[3])

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

10 of 36 Application Note

www.isystem.com

2.3 OS Thread-State Profiling by means of Code Instrumentation

The OS supports thread-state tracing by means of the macro MK_TRACE_STATE_THREAD. This macro
has already been placed into the source code at all the relevant code sections, but is disabled (i.e.
defined as empty) per default in the source code files (lib_src) of the MicroOS plugin provided by
Elektrobit.
The concept is to overwrite the default (empty) macro with iSYSTEM tool specific instrumentation code
that collects all relevant information and copies this data into a global data object which is monitored
by means to hardware trace.
The concepts for inserting the trace instrumentation code into the code generation and build process
to EB tresos Studio and the configuration of the iSYSTEM trace analyzer are described in section 4
Thread-State Profiling.
Error! Reference source not found. shows a sample iSYSTEM profiler timeline of threads distributed o
ver two cores, including the detailed state (IDLE/NEW/READY/RUNNING) of each thread.

Figure 10: Thread-State Profiling Timeline by means of MK_TRACE THREAD_STATE Instrumentation

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

11 of 36 Application Note

www.isystem.com

2.4 OS Thread-State Profiling without Code Instrumentation

In case code instrumentation is not an option, the current state of each thread can still be traced.
Alternately, the current state of each thread can be monitored by tracing a dedicated variable within
a thread control and status structure. These structures are grouped into arrays. EB tresos Safety OS
maintains one array per core and per thread type. Typically, EB tresos Safety OS uses 6 thread types,
i.e. there are 6 arrays per core. The most appropriate trace configuration for tracing the thread state
variables depends on the capabilities of the on-chip trace logic of the processor, i.e. available trace
interface bandwidth and data trace filtering (qualifier) features.
Figure 11 shows a sample iSYSTEM profiler timeline of threads derived from a data trace of the various
thread state variables.

Figure 11: Thread-State Profiling Timeline by means of Data Trace of Thread State Variable

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

12 of 36 Application Note

www.isystem.com

3 Running Thread/Task Profiling

3.1 Operating System Configuration

Making winIDEA aware of the target operating system (OS) can be accomplished by reading in an OS
description file. In case of an OSEK-compliant AUTOSAR OS, this OS description file is the so-called ORTI
file, generated by the OS generator of the AUTOSAR tool (e.g. EB tresos Studio). However, as
mentioned earlier, for running thread tracing of EB tresos Safety OS, this ORTI file based approach is
not applicable. Instead, an iSYSTEM-proprietary XML needs to be used to describe the target OS.
An OS description file can be imported into winIDEA via the menu: “Debug – Operating System…” as
shown in Figure 12: Selection of the iSYSTEM Profiler XML FileFigure 12.

Figure 12: Selection of the iSYSTEM Profiler XML File

3.2 iSYSTEM Profiler XML

The figure below shows a sample profiler XML file.

Figure 13: Sample iSYSTEM Profiler XML File

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

13 of 36 Application Note

www.isystem.com

The XML file consists of two major sections. The Types section contains a enumeration type
TypeRunningThreadSymbol that maps the thread names (displayed within the profiler) to data values
(addresses of data objects in the ELF file). The data values represent the data obtained by the profiler
by tracing the data objects as described in the »Profiler« section of the XML file.
The Profiler section describes that the global data objects, used by the OS for signaling the currently
running thread, have the symbol name MK_c0_coreVars.currentThread for core 0, or
»MK_c1_coreVars.currentThread« for core 1, respectively. The content of the XML can be derived
from the OS objects MK_cX_taskThreads, MK_cX_isrThreads and also MK_cX_auxThread and
MK_cX_idleThread).

3.3 Analyzer Configuration

The OS profiler of the winIDEA analyzer can be enabled by selecting »OS objects« in the »Profiler« tab
of the analyzer configuration dialog. The »RTOS Profiler Options« dialog (opened via »OS Setup...«)
allows enabling/disabling of individual OS objects in the analysis.

Figure 14: OS Running Thread Configuration in the iSYSTEM Analyzer

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

14 of 36 Application Note

www.isystem.com

3.4 Profiler Display

The profiler timelines in Figure 15 show a trace of the currently running thread on two cores. Both
timelines are based on the same trace recording, but display different time spans. The upper timeline
is zoomed in at the location of the blue and yellow markers of the lower timeline.
A dark-red profiler state bar indicates that the corresponding core is currently executing this thread. A
dark-blue bar indicates that there a multiple state transitions and the user must zoom in to see further
details of each state transition.

Figure 15: Sample Running Thread Profiler Timeline

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

15 of 36 Application Note

www.isystem.com

3.5 Extraction of current Task Object in a running Thread

However, as mentioned earlier, it is possible that multiple user tasks share the execution context of
one task thread, i.e. multiple MK_taskCfgTable[] elements refer to the same MK_cX_taskThreads[]
element.
Figure 16 and Figure 17Error! Reference source not found. show a sample thread configuration.
Threads 0 to 3 are used to run only one dedicated user task, whereas thread 4 is used to execute the
tasks SchMComTask_100ms, SchMComTask_10ms or SchMComTask_5ms, i.e. the element
MK_c0_taskThread[4].currentObject can either be 4, 5 or 6.
The value x indicated by MK_c0_taskThread[n].currentObject relates to an element x in the
MK_taskCfgTable[].

Figure 16: Sample User Task Configuration

Figure 17: Deriving user tasks from a Task Thread by means of Inspectors

The iSYSTEM profiler features so-called profiler “Inspectors”. These inspectors basically allow a user-
defined post-analysis of the profiler timeline and can used for sophisticated, used-specific event-chain
analysis of trace recordings, presented by the profiler.
An inspector allows to create a new profiler object, derived from the analysis of already existing profiler
objects.

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

16 of 36 Application Note

www.isystem.com

In the given example, the inspector creates 4 new profiler objects, derived from the existing profiler
objects “RunningThread” and the current object (i.e. currently running user task) of thread 4.
This inspector basically implements (describes) a state machine as depicted in Error! Reference source n
ot found..
Each state of the state-machine represents an Inspector Object on the Profiler Timeline e.g. the state
“Task 5” represents the Inspector Object Thread_4_Task_5_10ms as shown in Figure 18.

Figure 18: Inspector state-machine

Figure 19: Sample Inspector Configuration in the Inspector GUI of the winIDEA Analyzer

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

17 of 36 Application Note

www.isystem.com

4 Thread-State Profiling by means of Code Instrumentation

4.1 Overview

The OS supports thread state tracing by means of the macro MK_TRACE_STATE_THREAD. This macro has
already been placed into the source code at all the relevant code sections, but is disabled (i.e. defined
as empty) per default in the source code files (lib_src) of the MicroOS plugin provided by Elektrobit.

4.2 Required Code Instrumentation

4.2.1 Definition of the Thread State Tracing Hook

The default definition of the macro can be found in the MK_kconfig.h header file included by all
relevant kernel source files. Per default the macro is defined as empty, thus it must be replaced by an
iSYSTEM trace specific definition.
In the MK_kconfig.h below, the default definition has been replaced by an include of another header
file isystemOsTrace.h.

\include\MK_kconfig.h:

/* Use external trace tool if selected.

 *

 * !LINKSTO Microkernel.Function.MK_TRACE_STATE_THREAD,1

 * !doctype src

*/

#if MK_USE_TRACE

/* Include the header file that defines the trace tool's implementation of

MK_TRACE_STATE_THREAD.

*/

#include <isystemOsTrace.h>

/*

#define MK_TRACE_STATE_THREAD(typ,id,name,old,new) \

 MK_QmDumpThreadStateChange(typ, id, name, old, new)

*/

#else

#include <isystemOsTrace.h>

/*

#define MK_TRACE_STATE_THREAD(typ, id, name, old, new) do { } while(0)

*/

#endif

Listing 4: Enabling the iSYSTEM Instrumentation Code in MK_kconfig.h

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

18 of 36 Application Note

www.isystem.com

The iSYSTEM trace specific implementation of the MK_TRACE_STATE_THREAD macro is listed below.
The isystemOsTrace.h header file must be in the folder \include\isystemOsTrace.h.

/* ==

 * File: isystemOsTrace.h

 * iSYSTEM EB tresos SafetyOS Thread State Trace Instrumentation

 * MK_TRACE_STATE_THREAD macro definition

 * == */

#ifndef __isystemOsTrace_H

#define __isystemOsTrace_H

extern unsigned long isystem_os_trace[1];

#ifndef MK_TRACE_STATE_THREAD

#define MK_TRACE_STATE_THREAD(typ, id, name, old, new) \

 do { \

 isystem_os_trace[0] = (mfcr(0xFE1C)<<30) | (new<<28) | (0xFFFFFF&(int)name); \

 } while (0)

#endif

#endif /* if !defined(__isystemOsTrace_H) */

Listing 5: MK_TRACE_STATE_THREAD Macro Defintion of iSYSTEM Trace

Parameter Name Description

Typ Thread object type
(not used for thread state trace)

Id Integer ID of the thread
(not used for thread state trace)

Name Pointer to the name string of the thread
(e.g. MK_taskCfgTable[5].threadCfg.name)
Only the lower 24 bits of the pointer value are communicated to the trace
tool. The upper bits are derived from the ELF file.

Old Previous state of the thread, before the current state-transition.
(not used for thread state trace)

New New state of the thread, after the current state-transition.

4.2.2 Definition of the global Variable isystem_os_trace

The global data object isystem_os_trace must be linked into a data memory region that is assigned to
the kernel (.BSS section of the kernel). This can be achieved by added an iSYSTEM trace specific source
file, containing the global variable definition, to the build process of the kernel library. As all OS kernel
source files use the prefex “MK_k_” also the iSYSTEM source file needs to be named accordingly, e.g.
MK_k_isystem.c. The code listing below shows the definition of the global variable isystem_os_trace
in the Mk_k_isystem.c source file.

/* ===

 * file: Mk_k_isystem.c

 * iSYSTEM EB tresos Safety OS Thread State Trace Instrumentation

 * Global variable used for OS Thread State tracing.

 * Needs to be accessible by kernel.

 * === */

unsigned long isystem_os_trace[1];

Listing 6: Definition of isystem_os_trace Variable

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

19 of 36 Application Note

www.isystem.com

4.2.3 Adding the Instrumentation Code into the Build System

The Mk_k_isystem.c source file can be added to the kernel library file list by extending the
MK_LIBSRCKERN_KLIB_BASELIST macro in the MicroOs_filelist.mak file.

\make\MicroOS_filelist.mak:

#===

Lists of base filenames for the kernel library

#===

MK_LIBSRCKERN_KLIB_BASELIST is the list of all files in the plugin/lib_src/kernel

directory that

go into the kernel library.

The files are listed without prefix or extension.

DON'T PUT SYSTEM-CALL KERNEL-SIDE FUNCTIONS HERE! - Put them in

MK_SYSTEMCALL_BASELIST!!!

MK_LIBSRCKERN_KLIB_BASELIST += isystem

Listing 7: Makefile modifications for adding MK_k_isystem.c to the Build Process

4.3 Operating System Configuration

Making winIDEA aware of the target operating system (OS) can be accomplished by reading in an OS
description file. In case of an OSEK-compliant AUTOSAR OS, this OS description file is the so-called ORTI
file, generated by the OS generator of the AUTOSAR tool (e.g. EB tresos Studio).
For thread-state tracing of EB tresos Safety OS, this ORTI file based approach must be extended by
means of an iSYSTEM-proprietary XML file. An OS description file can be imported into winIDEA via the
menu: “Debug – Operating System…” as shown in Figure 20.

Figure 20: Selection of the iSYSTEM Profiler XML File

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

20 of 36 Application Note

www.isystem.com

4.4 iSYSTEM Profiler XML

Figure 21 shows a sample profiler XML file used for thread-state profiling via hook instrumentation.

Figure 21: Sample iSYSTEM Profiler XML file for Thread-State Profiling via Hook Instrumentation

The XML file can be separated in three major sections:

1. The “ORTI” section includes the standard ORTI file generated by EB tresos Studio. From the
ORTI file the profiler obtains the mapping between the MK_taskCfgTable[].threadCfg.name
values obtained by instrumentation and tracing the isystem_os_trace variable.

2. The “Types” section contains an enumeration type TypeThreadStateSymbol that maps thread-
state names (displayed within the profiler) to data values obtained by instrumentation and
tracing the isystem_os_trace variable as described in the “Profiler” section of the XML file.

3. The “Profiler” section describes how to decode the data values captured by tracing the
isystem_os_trace variable.

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

21 of 36 Application Note

www.isystem.com

4.5 Analyzer Configuration

The OS profiler of the winIDEA analyzer can be enabled by selecting “OS objects” in the “Profiler” tab
of the analyzer configuration dialog.
The “RTOS Profiler Options” dialog (opened via »OS Setup...«) allows enabling/disabling of individual
OS objects in the analysis.

Figure 22: OS Thread-State Configuration in the iSYSTEM Analyzer

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

22 of 36 Application Note

www.isystem.com

4.6 Profiler Display

The screen shot below shows a sample dual-core thread-state profile. The threads “Loop”, “Cyclic”,
“Cyclic2C1”, “Task_St1” and “Task_St2” run on the primary core, the thread “Cyclic2C2” executes on
the secondary core.
The profiler timelines in Figure 23 show a state trace of the threads running on two cores. Both
timelines are based on the same trace recording, but display different time spans. The upper timeline
is zoomed in at the location of the blue and yellow markers of the lower timeline.
A dark-red profiler state bar indicates that the corresponding core is currently executing this thread. A
dark-blue bar indicates that there a multiple state transitions and the user must zoom in to see further
details of each state transition.

Figure 23: Sample Thread-State Profiler Timeline

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

23 of 36 Application Note

www.isystem.com

5 Thread-State Profiling without Code Instrumentation

5.1 Overview

The current state of each thread can be monitored by tracing a dedicated variable within a thread
control and status structure. These structures are grouped into arrays. EB tresos Safety OS maintains
one array per core and per thread type. Typically, EB tresos Safety OS uses 6 thread types, i.e. there
are 6 arrays per core. The most appropriate trace configuration for tracing the thread state variables
depends on the capabilities of the on-chip trace logic of the processor, i.e. available trace interface
bandwidth and data trace filtering (qualifier) features.

5.2 Thread Control/Status Structures

As mentioned above, EB tresos Safety OS typically uses 6 thread types:

Thread Type Description

Aux1 Thread Kernel thread, typically used for the “QMOS” task.

Aux2 Thread Kernel thread, typically used for the “MAIN” task.

Error Hook Thread Kernel thread, used of the error hook task.

Idle Thread Kernel thread, used for the idle task.

ISR Threads User threads, used for ISRs of category 2.

Task Threads User threads, used for user tasks.

The figure below shows all thread control/status arrays of core 0 listed in a winIDEA Watch window.
The task thread array has been expanded, as well as the structure of task thread 2, showing its
individual structure elements, such as the “state” object (of type “mk_threadstate_t”).

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

24 of 36 Application Note

www.isystem.com

Figure 24: Thread Control/Status Structures of all six Thread Types

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

25 of 36 Application Note

www.isystem.com

5.3 Operating System Configuration

Making winIDEA aware of the target operating system (OS) can be accomplished by reading in an OS
description file. In case of an OSEK-compliant AUTOSAR OS, this OS description file is the so-called ORTI
file, generated by the OS generator of the AUTOSAR tool (e.g. EB tresos Studio).
For thread-state tracing of EB tresos Safety OS, this ORTI file based approach must be extended by
means of an iSYSTEM-proprietary XML file. An OS description file can be imported into winIDEA via the
menu: “Debug – Operating System…” as shown in Figure 25.

Figure 25: Selection of the iSYSTEM Profiler XML File

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

26 of 36 Application Note

www.isystem.com

5.4 iSYSTEM Profiler XML

The figure below shows a sample profiler XML file used for thread-state profiling without
instrumentation.

Figure 26: Sample iSYSTEM Profiler XML file for Thread-State Profiling

In the upper section (“Types”) an enumeration type is defined (“Type_ThreadState_MAPPING”), which
maps a thread name, displayed in the winIDEA Profiler to its corresponding state variable in the OS
thread status/control structure/array.

In the lower section (“Profiler”), a new profiler object is created. It is defined as a “TASKSTATE” object,
telling the profiler that this object is used for OS task state (or thread) reconstruction. The “Type” and
“Expression” tags tell the profiler to use the “Type_ThreadState_MAPPING” for the thread state
analysis.

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

27 of 36 Application Note

www.isystem.com

5.5 Analyzer Configuration

The OS profiler of the winIDEA analyzer can be enabled by selecting »OS objects« in the »Profiler« tab
of the analyzer configuration dialog.
The “RTOS Profiler Options” dialog (opened via “OS Setup...”) allows enabling/disabling of individual
OS objects in the analysis.

Figure 27: OS Thread-State Configuration in the iSYSTEM Analyzer

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

28 of 36 Application Note

www.isystem.com

5.6 Profiler Display

The profiler timelines in Figure 28 show a thread state trace of a sample EB tresos Safety OS
application. Both timelines are based on the same trace recording, but display different time spans.
The upper timeline is zoomed in at the location of the blue and yellow markers of the lower timeline.
A dark-red profiler state bar indicates that the corresponding core is currently executing this thread. A
light-red bar indicates that a thread is active, but currently not running, i.e. it is each in NEW (activated
but not running yet) or in READY (pre-empted by other thread) state.

Figure 28: Sample Thread-State Profiler Timeline

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

29 of 36 Application Note

www.isystem.com

5.7 Hardware Trace Configuration Options for various Processor
Architectures

The on-chip trace logic (of each core) must be configured for monitoring all data write accesses to the
thread state variable of each thread. As mentioned earlier this typically involves six thread
status/control arrays.

5.7.1 ARM ETM (e.g. on ARM Cortex R7)

The ARM ETM can be configured to observe the write access to the thread status/control arrays.
However, the number of available address comparator depends on the actual ETM configuration on
the given processor.
The figure below shows a sample ETM configuration on an R7 ETM implementation a Renesas RCAR
M3 SoC.

Figure 29: R7 ETM configuration to trace write accesses to the Thread Status/Control Arrays

5.7.2 Infineon AURIX MCDS (e.g. on TC277ED)

The AURIX MCDS can either be configured to observe the entire arrays or the (many) individual thread
state objects.

The entire arrays can observed via the DTU Magnitude comparators (dtu_ea_trig_[7:0]). This approach
only required 6 on-chip data trace channels (i.e. address comparators), but the disadvantage is that
also write access to array/structure elements are traced, which are not required for thread state
tracing. This means, unnecessary trace messages may lead to trace interface bandwidth issues (i.e.
trace overflow to reduced trace duration).

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

30 of 36 Application Note

www.isystem.com

Figure 30: AURIX MCDS DTU trigger configuration to trace the Thread Status/Control Arrays

Alternatively, the individual thread state can be observed by means of the MCDS Fine Grain
Comparator.
The figure below shows a sample Fine Grain Comparator configuration for a system with 5 task threads.

Figure 31: Sample Fine Grain Comparator configuration for a system with 5 task threads

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

31 of 36 Application Note

www.isystem.com

6 Inspectors

Inspectors are a winIDEA feature to analyze user-defined metrics in the winIDEA profiler timeline. It
allows the creation of new Profiler objects, so called Inspectors, which can change their state
depending on different events, such as state changes of other objects and timing parameters. This
section demonstrates how inspectors can be used to cover certain advanced timing-analysis use-cases
for the EB tresos AutoCore operating system.

6.1 Task Metric Analysis

Inspectors can be used to calculate the metrics defined in the AUTOSAR Timing Extensions
Specification. Predefined Inspectors exist for a certain subset of those metrics. The Inspectors are
defined in a generic way meaning the metrics are calculated for all threads in the trace. There is no
need to add a separate Inspector for each task and metric.
If you are interested in using those Inspectors, ask your iSYSTEM contact for the respective Inspectors
JSON file which can be imported into the winIDEA Profiler to make the metrics available.

Figure 32: Inspectors to calculate Task Metrics for the Thread SchMDiagStateTask_20ms

For a further analysis of the Inspector objects, you can utilize the Properties view of the winIDEA
Analyzer. To open the Properties view, select the desired object and press “Alt + Enter”.

Figure 33: Opening the “Properties” View for a Profiler Inspector Object

For the task metric “StartToStart”, the relevant object statistic is “Period”. It measures the time
difference between the NEW-to-RUNNING state transitions of two consecutive instances of the same
thread.

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

32 of 36 Application Note

www.isystem.com

Figure 34: Inspector Object “StartToStart” for the Thread SchMDiagStateTask_20ms
Note: The Figure shows two profiler timelines of the same trace recording only using different zoom factors.

The Properties view provides the measurements for average, maximum and minimum period (i.e.
“StartToStart” time) along with the time (and link “->”) to its occurrence.

Figure 35: Period Properties for the “ActivateToActivate” Inspector Object

For the task metric “ResponseTime”, the relevant object statistic is “Net Time”. It measures the time
between the thread activation (IDLE-to-NEW transition) and the start of the thread (NEW-to-RUNNING
transition).

Figure 36: Inspector Object “ResponseTime” for the Thread SchMDiagStateTask_20ms

The Properties view provides the measurements for average, maximum and minimum Net Time (i.e.
“ResponseTime”) along with the time (and link “->”) to its occurrence.

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

33 of 36 Application Note

www.isystem.com

Figure 37: Net Time Properties for the “ResponseTime” Inspector Object

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

34 of 36 Application Note

www.isystem.com

7 BTF Export

The winIDEA Profiler supports the export of traces into the BTF format. BTF is a CSV based trace format
that is supported by different timing tool vendors. Before the BTF export is usable the iSYSTEM profiler
XML file must be updated. The Profiler supports the export of tasks, ISR2s, Runnables and signals. For
tasks and threads the following BTF mapping reference must be added to the TASKSTATE object.

<BTFMappingType>Type_BTFSTATE_MAPPING</BTFMappingType>

The btf_mapping itself must then be added to the TypeEnum section of the XML file. For EB tresos
Safety OS the mapping in Error! Reference source not found. can be used. The mapping is required to t
ell winIDEA which thread state maps to which BTF task state transition.
The following steps must be executed to export a BTF trace file.

1. Load symbols to make sure that the updated iSYSTEM Profiler XML is in use.
2. Record a trace with the necessary configuration to record threads and Runnables.
3. Select the export button in the Profiler timeline, choose BTF export, and export.

This generates a BTF trace file which matches the profiler timeline as shown in Figure 38.

<TypeEnum>

 <Name>Type_BTFSTATE_MAPPING</Name>

 <Enum><Name>NEW</Name><Value>Active</Value></Enum>

 <Enum><Name>READY</Name><Value>Ready</Value></Enum>

 <Enum><Name>RUNNING</Name><Value>Running</Value></Enum>

 <Enum><Name>IDLE</Name><Value>Terminated</Value></Enum>

</TypeEnum>

Listing 8: Mapping from EB tresos Safety OS thread states to BTF task state transitions.

The figure below shows a sample thread and Runnable profile and its corresponding BTF export.

Figure 38: The winIDEA Profiler allows a trace export to the BTF format. BTF is supported by various timing tool
vendors.

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

35 of 36 Application Note

www.isystem.com

Note: The winIDEA Profiler also allows an export of Runnables. However, Runnable trace and profiling
is beyond the scope of this Application Note. Please refer to the dedicated Application Note about
Runnable trace with EB tresos AutoCore and EB tresos Safety.

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

36 of 36 Application Note

www.isystem.com

8 Technical Support

8.1 Online Resources

Online Help

winIDEA and testIDEA

online help

Knowledge Base

Tips & tricks categorized by
issue type and architecture

Tutorials

From beginner to expert

Technical Notes

How-tos for winIDEA

functionalities with scripts

Application Notes

How-to notes on advanced

use-cases

Webinars

Technical webinars about

ISYSTEM tools with use cases

8.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

iSYSTEM has made every effort to ensure the accuracy and reliability of the information provided in
this document at the time of publishing. Whilst iSYSTEM reserves the right to make changes to its
products and/or the specifications detailed herein, it does not make any representations or
commitments to update this document.

© iSYSTEM. All rights reserved.

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

