This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.

Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.
All trademarks are property of their respective owners.

iSYSTEM is an I1SO 9001 certified company

Elektrobit EB tresos Runnable Profiling

Table of Contents

1 T a oY [V o] o HS PSSR USR 2
1.1 {0 a0 F=1 o] [= P USRPP 2
1.2 (U Ta Yo T o] LI I [l T V-SSP 2

2 Runnable Profiling by means of Program Traceccccuviieiiiieeeeiiiie e e s 3
2.1 iISYSTEM Profiler Configuration.........ceiiiiiieiiiee et 3
2.2 Hardware Trace ConfigUrationscoiciiiiiiiiiie et e e et e e e st e e enanaeaeeas 8
2.3 WINIDEA Profiler VisualizatioNn.........oocciiiiiciiie ettt aaee e 10

3 Runnable Profiling via RTE VFB Tracing Hook Instrumentationccccceeeeviiieeiiiiiee e, 14
3.1 I o] o T ={W] =Y o o ISP PP 14
3.2 Hardware Trace ConfigUrationscoouuiiieiiiiie ettt e e e e s ree e e e 20
3.3 WINIDEA Profiler VisualizatioNn........coocciiiiiiiiie ettt 23

4 20 {0 T TSRS 24

5 [o1=Tot o] ¢SOOSO 25
5.1 Runnable Call-Time Timing CoONSTraint.......cccuiiieiiiiee e e 25

(SR K =To] o o] ot | YU o] oYY AP TP URRRPPPPRRORt 27
6.1 ONIINE RESOUICES .eueviieiieeciieeeiteeseteeeteeestteeetee e taeesaeeateeesnteeesseeeasseesnseeessseesnseeesnseesseeensees 27
6.2 [61e] 01 - [SR ST PPPPOUOPPPPP 27

1 of 27 Application Note

www.isystem.com

Elektrobit EB tresos Runnable Profiling

1 Introduction

This document describes how to use the winIDEA Analyzer for the timing analysis of AUTOSAR
Runnables of the two Elektrobit AUTOSAR solutions “EB tresos AutoCore” or “EB tresos Safety”.

1.1 Runnables

In AUTOSAR Runnables are special functions defined in the RTE. They are mapped to tasks and
executed in the context of those tasks. Runnables are triggered by RTE events such as periodic events
and data-received-events. Tracing Runnables becomes important when a more detailed view in the
application is required. In theory Runnable tracing can be done independently from Task/ISR tracing.
However, whenever not only the currently running Runnable is of interest, but also the information
about preemptions and resumes, it is mandatory to record a Task/ISR state trace in conjunction with
the Runnable trace. By recording the task and ISR state information the profiler can reconstruct the
Runnable preempt and resume events.

For more information about OS profiling, please refer to the dedicated Application Notes “Elektrobit
EB tresos AutoCore OS Profiling” and “Elektrobit EB tresos Safety OS Profiling”.

1.2 Runnable Tracing

In general, there are three trace measurement techniques: software, hybrid and pure hardware based
tracing. All techniques are meant to examine the runtime behavior of a system. In this document we
focus on hardware and hybrid trace techniques. These trace techniques rely on a dedicated on-chip
trace logic which is used to capture events of interest and send it off the chip. Depending on the chip
none or more of the following techniques are available. The available trace techniques have a direct
influence on which kind of Trace Objects can be recorded or not.

In general, the iISYSTEM Analyzer supports two concepts for Runnable profiling.

e Runnable Profiling by means of on-chip Program Trace
e Runnable Profiling by means of Data Trace combined with Instrumentation of the RTE Virtual
Function Bus (VFB) Tracing Hooks

Which one is the most suitable depends on the AUTOSAR environment and the processor in use.

1.2.1 Program Flow Trace

A program flow trace (also called instruction trace) records the instructions that are executed by the
CPU. This means a program flow trace shows the complete execution path of an application for the
duration of the trace recording. Program flow tracing can be used for debugging, but also for profiling
certain trace objects. The most common use-case is to create a Runnable trace based on the function
entry and exit information that are part of an instruction trace.

1.2.2 Instrumented Data Trace

Pure hardware data trace is not always sufficient to record a trace for all possible trace objects of
interest. For example, there is usually no variable that indicates which Runnable is currently executed.
In such cases instrumentation can be added to the application (i.e. RTE) to write the desired
information into a dedicated variable. This variable can then be observed efficiently by hardware data
trace. Such a trace approach is also called “hybrid”, as it combines the advantages of instrumentation,
i.e. the extraction of only the relevant information already on-chip and the performance of the on-chip
hardware trace logic.

2 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

2 Runnable Profiling by means of Program Trace

This concept is based on full (unconditional) program trace. The program trace logic of the processor
emits a trace message whenever the core executes specific branch instructions. Based on those trace
messages the trace analyzer can reconstruct the entire flow of the program code, down to each
individual assembly instruction (i.e. instruction trace). The reconstructed program flow can
subsequently be used by the profiler to reconstruct a function-level profile of the entire executed
program.

Some of these functions can be treated as AUTOSAR Runnables, i.e. the profiler creates a dedicated
profiler object for those functions the user has declared as Runnables.

The advantage of this concept is that Runnable Profiling can be done on unmodified/non-instrumented
code. However, the disadvantage is that the trace message generation rate of a full program trace
often exceeds the available bandwidth of the processor trace interface (such as a parallel Nexus trace
port, ARM CoreSight TPIU or AURIX DAP interface).

2.1 iSYSTEM Profiler Configuration

Typically, run-time analysis on AUTOSAR based applications is done by means of the ORTI file.
However, the ORTI file only covers objects of the AUTOSAR OS, such as tasks and ISR2s.

AUTOSAR Runnable are implemented within the RTE, i.e. are outside the scope of the ORTI file.
iSYSTEM uses a proprietary XML file format to describe the tracing/profiling related aspects of OSes,
hypervisors or AUTOSAR RTE objects which are subject to timing/scheduling to the winIDEA Profiler
(iSYSTEM Profiler XML file).

Such a Profiler XML file can be used to basically extend the ORTI file, with RTE related information such
as Runnables.

The figure below shows a sample profiler XML file used for Runnable profiling based on program trace.

<TypeEnum>

qHame}Type_RUHHABLE_MAPPINGﬁfﬂameh
amehSWC_Modinycho_ModinychoﬁfHame} ﬁ?alueh&ch_yodinycho_nodinychoﬁfValuemﬁfEnumb
amehswc_pyclicCounter_ﬁetCounterﬁIHame: alueh&swc_pyclicCounter_ﬁetCounterﬁf?aluehﬁfEnumm
amehswc_pyclicCounter_pyclicﬁfHameh ﬁ?alueh&swc_pyclicCounter_pyclicﬁf?eluehﬁfEnamp

<Profiler>

<Cbject>
<Definition>RUN</Definition>
<Description>Runnables</Description:
<Type>Type RUNNABLE MAPPING</Type>
<Level>Runnable</Level>
<Expression></Expression>
<5ignaling>Exec</Signaling>
<DefaultValuex0</DefaultValue>

</Cbject>

Figure 1: Sample iSYSTEM Profiler XML File for Runnable Profiling by means of Program Trace

In the upper section (“Types”) an enumeration type is defined (“Type_Runnable_MAPPING”), which
maps a Runnable name, displayed in the winIDEA Profiler to its corresponding symbolic name in the
ELF file.

Optionally, the ELF file name can be attached to the function symbolic name, e.g.
“SWC_ModifyEcho_ModifyEcho,, TRICORE_TC27_simple_demo_can_rte.elf”.

In the lower section (“Profiler”), a new profiler object is created. It is defined as a “RUN” object using
“Exec” signaling, telling the profiler that this object is used for “Runnable Profiling” based on Function
Profiling in Entry/Exit mode of the analyzer. The “Type” tag tell the profiler to use the enum type
“Type_Runnable_ MAPPING” for the Runnable naming.

3 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

In a typical use-case, these XML file section will actually be part of a more comprehensive Profiler XML
file also used for OS task (and ISR) state tracing.

The trace hardware of the processor needs to be configured for unconditional program trace. Please
refer to Section 0 “

4 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

Hardware Trace Configurations” for the processor-specific settings.

The Profiler only needs to be configured for OS objects profiling. Code profiling is not needed.

Hardware Profiler Coverage

Profile
RTO5 Profiler Options
[Jcode
O SIETTEL Operating System
Data EBSafetyNolnstr
[05 objects 05 Setup. ..
Obijects to profile
[aux [~ Tasks
[Metwork [(]Passpaint
Code Areas
| Enter filter string(s)
Object Info:
Name: RUN
Definiton: RUN
Description: Runnables
Signaling: Exec

Figure 2: Profiler Configuration for Runnable Profiling based on Program Trace

But first, the Profiler XML file has to be added to the winIDEA workspace and then the profiler is
configured to use this information. To add the XML file to the workspace execute the following steps.

5 of 27

Open the Debug menu.
Debug

Open the OS Configuration Dialog.
¥# Operating System...

Create a new OS Configuration.

MNew, .,

Select OSEK AUTOSAR OS.
OSEK AUTOSAR [

Specify a name, for example, EB AutoCore OS.
Mame ot

OSEK AUTOSAR
EB AutoCore OS State RunPT| |

Select XML as RTOS description file type.
Property Walue
= Configuration

RTOS description file type iISTYSTEM XML
RTOS description file location

www.isystem.com

EBAutaCoreState Run P T xml

Application Note

Elektrobit EB tresos Runnable Profiling

7. Select the XML file and click OK.
()4

8. Make sure to load symbols to make the change active.

s

6 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

Next, the winIDEA profiler is configured to use the Profiler XML file, too. To do so execute the following
steps.

1. Open the profiler configuration. Make sure it is the same configuration for which data tracing
of the XML variables is configured.

&

&

2. Select the hardware tab and make sure that the profiler is activated.
Hardware Prafiler

3. Change to the profiler tab and make sure that OS objects are selected.
Profiler 05 objects

4. Click on OS Setup and select the OS for which you have added the XML file.
Operating System
5 Setup... EB AutoCore OS5 State RunPT ao

5. Select all tasks and ISRs you want to profile. (Again, only those objects for which the signaling
variable is record will show up in the profiler timeline.)

Ohjects to profile
[+]Runnables
6 [Tasks

7. Confirm with OK.
()4

8. Start a new trace recording.

>

7 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

2.2 Hardware Trace Configurations

For most processors the on-chip trace logic needs to be configured for unconditional program trace.

221 ARM ETM (e.g. Cortex R7)

The ARM Embedded Trace Macro Cell (ETM) allows for efficient instruction tracing. Whether ETM
instruction trace can be applied for typically long-term OS and Runnable profiling mainly depends on
the available bandwidth of the trace port, such as a parallel trace port (TPIU) or a High-Speed Serial
Trace Port (HSSTP).

Figure 3 shows an unconditional instruction trace configuration of an ETM version 4 (ETMv4),
implemented for instance in an ARM Cortex R7 device.

Instruction Trace

View INST
Enable event RS(1) Enabled at trace start
Exception Level
Secure L Ll L3 |:| Always trace system error
Mon secure L Ll L3 |:| Always trace RESET

Figure 3: Program (i.e. Instruction) Trace enable on a Cortex R7 ETMv4

8 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

2.2.2 PowerPC

The on-chip trace hardware of PowerPC based architectures follow the Nexus Debug & Trace standard.
They support a very efficient variant of Nexus program trace messages, so-called “Branch History
Messages”. This trace messaging type is very suitable for function, i.e. Runnable, profiling.

Figure 4 shows an unconditional program trace configuration of PowerPC based device.

Record
Start Stop
(pata immediately s NEVEr
Program | immediately ~ | ... | newer | |..
Type |Branch History Messages w

Figure 4: Program Trace enable on a PowerPC Nexus Trace Module

2.2.3 Infineon AURIX MCDS

The AURIX MCDS on-chip trace logic supports two approaches for function (i.e. Runnable) trace.

Program Trace
This is a full instruction trace, based on trace message generation upon the execution of specific branch

instructions. This approach requires a high trace interface bandwidth, e.g. AGBT interface, especially
when used on multi-core AURIX devices.

Figure 5 shows how to enable unconditional program trace of AURIX MCDS Processor Observation
Block X (POB Action.ptu_enable = ALWAYS).

Trigger - [Advanced Coverage Trigger]

McDs TriCore X TriCoreY SRI SPE MCX

Action (double dick to edit)

dcu_enable -
dou_sync -
diu_wdat EVT15
dtu_wadr EVT15
dtu_radr -
ptu_nesting -

Figure 5: AURIX MCDS Full Program Trace enable

Compact Function Trace (CFT)

This is a Function trace, based on trace message generation upon function call/return instruction
execution. This approach requires a consistent function call/return sequence for all functions. This may
not always be the case due to compiler optimizations such as function chaining which replaces a
function call instruction by a jump instruction.

However, CFT required much less trace interface bandwidth compared to full instruction trace.

Figure 6 shows how to enable unconditional Compact Function trace of an AURIX MCDS Processor
Observation Block X (POB Action.ptu_nesting = ALWAYS).

9 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

Trigger - [Advanced Coverage Trigger]

McDs TriCore® TriCore ¥ SRI SPB MCX

Action (double dick to edit)

deu_enable -
dou_sync -
dtu_wdat EVT15
dtu_wadr EVT15
dtu_radr -

Eh..l enahle -

Figure_6: AURIX MCDS Compact Function Trace enable

2.3 winlIDEA Profiler Visualization

2.3.1 Profiler Timeline

If the application is running you should see the OS objects in the profiler timeline as shown in Figure

7. If nothing is shown check the trace window if accesses to the signaling variable have been

recorded. Also make sure that the data section ol of the profiler timeline is selected to be visible.

Profiler Timeline

G- R/ F|H oA MARRARR

223ms 300us 224ms 100us 224ms 200us 224n
1 1 1

Data History
B--IEI Tasks o
-] NO_TASK_CORE_®
I Rte_Event_Task
I SchMComTask_1ms
- W SchMComTask_Sms
Il SUSPENDED
B NEW
1ol RUNNING
~57 ResponseTime
~5F ActivateToActivate
~<P InitialPendingTime
~57 StartToStart
- SlackTime
- Bl iRte_Tine Task
- B SchMDiagStateTask_26ms
- Il SUSPENDED
-l NEW
I RUNNING
¥ ResponseTime
Y ActivateToActivate
7 InitialPendingTime
 StartToStart
7 SlackTime
[+ 1l Unknown_CORE_B
=1’ Runnables
- f&, Can_MainFunction_Mode |
- & Com_MainFunctionRx [111
- f%, Com_MainFunctionRouteSignals |
- & Com_MainFunctionTx NI
- fi, SHC_ModifyEcho_ModifyEcha
- #% SWC_CyclicCounter_Cyclic e e
&, EcuM_MainFunction [M MOl
&, BswM_MainFunction I
B Dem_MainFunction 11 1}
f; ComM_MainFunction_8 [

£ CansM_MainFunction |

Figure 7: OS Task State and Runnable Trace in the winIDEA Profiler Timeline.

&

2.3.2 Profiler Statistics

The winIDEA Profiler also calculates statistics for the Runnables. A sample Profiler Statistics windows
is shown in Figure 8.

10 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

@-m-¢ B8 A

Data Count

w1 Tasks
1P Runnables
S SHC_ModifyEcho_ModifyEcho
4%, can_MainFunction_Mode
&, Com_MainFunctienRx
&, Com_MainFunctienRouteSignals
£ Com_MainFunctionTx
f& SHC_CyclicCounter_Cyelic
Jfx) EcuM_MainFunction
f&) BswM_MainFunction
/& Dem_MainFunction
f&; ComM_MainFunction_@

Met Time Net Max Time

419.825 us @.84% 4.587 us
421.584 us @.84% 477 ns
2.248533 ms 9.22% 12.139 us
138.574 us @.81% 24.794 us
4.788991 ms 0.48% 49.386 us
18.498627 ms 1.85% 135.152 us
2.531829 ms @.25% 51.861 us
1.484467 ms 0.14% 28.262 us
44@8.516 us 8.84% 8.925 us
1.869893 ms @.11% 21.488 us

Figure 8: Sample Profiler Statistics for Runnables

8.00%

9.00%|
8.00%|

B.28%

8.00%|
8.81%|

8.01%

9.00%|
8.00%|

B.28%

Gross Average Time

4.871 us
421 ns
13.183 us
697 ns
28.824 us
124.878 us
68.928 us
32.644 us
18.512 us
24.428 us

@.98%
a.08%
8.00%
@.e8%
a.00%
8.81%
2.91%
a.08%
a.8a8%
@.e8%

Gross Max Time

5.283 us
477 ns
14.264 us
25.814 us
54.788 us
155.831 us
61.144 us
32.885 us
18.625 us
24.442 us

9.00%
0.80%
8.00%
8.00%
8.01%
8.82%
8.01%
0.80%
8.88%
8.00%

In the statistics in Figure 8 only the number of recorded task instances (Count), the total net execution
time of each task, the average net time and the average period are displayed.

Figure 9 lists all the statistics which can be calculated by the profiler for each profile object.

G- Y ¥ @4

[yl

Data |+ Count
- :v' Met Time
+ Met Average Time
Met Min Time
Net Max Time
Gross Time

Gross Average Time
Gross Min Time
Gross Max Time
Call Time
Call Average Time
Call Min Time
Call Max Time

~ Period Average
Pericd Min
Period Max
Inactive Tirme
Inactive Average Time
Inactive Min Time

Inactive Max Time

Figure 9: Complete list of calculated Profiler Statistics

Another possibility to get a summary of all statistics for a profile object such as a task or a Runnable is
to open the “Properties...” view. It can be opened by selecting the desired profiler object and then hit
“Alt + Enter” (or right mouse click), as shown in .

11 of 27

www.isystem.com

Application Note

Elektrobit EB tresos Runnable Profiling

- IEI Runnables
Jx, SWC_ModifyEcho_ModifyEcho
Jx, Can_MainFunction_Mode
Jx, Com_MainFunctionRx
Jx, Com_MainFunctionRouteSignals
Jx, Com_MainFunctionTx

i

Jx, EcuM_MainFunction Zoom g
Jx, BswM_MainFunction Go To »
% Dem_MainFunction Markers ,
Jx, ComM_MainFunction_]

Jx, CanSM_MainFunctior Find g
f& OsStackKillerl Filters .
Jx, Can_FlexCan_MainFL

e Properties... %A|t+ Enter

Figure 10F: Opening the Properties View for a selected Profiler Object, for instance the Runnable
SWC_CyclicCounter_Cyclic

Figure 11: Properties View for the Runnable “SWC_CyclicCounter_CyclicFigure 11 shows a sample
Properties view for the Runnable “SWC_CyclicCounter_Cyclic”.

For each metric the total, average, maximum and minimum time is measured, along with the time (and
link “->” of its occurrence.

12 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

Properties for SWC_CyclicCounter_Cyclic e

Meutral | TSK: Rte_Time_Task

Mame | SWC_CydicCounter_Cydic

Met Time 10,490627 ms Time spentin the body of the function

Average 104,908 us Occurred at time In context

Max | 135.152us | |2s3.998854ms | [-»| |TSK:Rte Time Task

Min | 103,657 us | | 13.958458 ms | -=| | TsK:Rte_Time_Task

Gross Time 17407856 ms 'I'|n1_e between function entry and exit inside the
active task only,

Average 124.078 us Qccurred at time In context

Max | 155.831 s | |283.998354ms | |-> | TSK:Rte_Time_Task

Min | 122,999 us | |183.886275ms | |-» | TSK:Rte_Time_Task

call Time 12.407356 ms Time elapsed between function entry and exit

Average 124.078 us QOccurred at time In context

Max | 155.831 s | |283.998854ms | |-» | TSK:Rte_Time Task

Min | 122,999 us | |183.986275ms | |-> | TSK:Rte_Time_Task

Period Time between consecutive entries f writes

Average period | 10001345 ms Occurred at time In context

Max. period | 10.008033 ms | |674.050251ms | [-»| | TSK:Rte_Time_Task

Min. period | 9.994754ms | |s44.080678ms | [-> | TSK:Rte_Time_Task

Inactive 985.089503 ms Time spent outside active state

Average 9.850895 ms Occurred at time

Max | 9.884563 ms | |674.173725ms | |-> | T5K:Rte_Time_Task

Min | 9.841585 ms | |254.154685ms | |-> | TSK:Rte_Time_Task

Cancel Help

Figure 11: Properties View for the Runnable “SWC_CyclicCounter_Cyclic”

13 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

3 Runnable Profiling via RTE VFB Tracing Hook Instrumentation

Tracing of Runnables can be accomplished via program flow trace or by means of instrumentation. This
section describes how to record a Runnable aware trace by instrumenting the Virtual Function Bus
(VFB) trace hooks. VFB tracing allows the interaction between the AUTOSAR software components to
be traced. The user can decide which events like Runnable Start and Return or Sender/Receiver Send
should be traced.

This section explains how to activate Runnable hooks in the EB tresos Studio and generate empty hooks
by using template code generation. The hooks are then filled with the necessary instrumentation code.
All Runnable events are written into a single global variable which can be recorded via data tracing.
Finally, the winIDEA Profiler is configured to interpret the global variable as a Runnable trace via an
iSYSTEM Profiler XML file.

3.1 RTE Configuration
3.1.1 RTE VFB Trace Configuration

At first, the VFB Runnable hooks for all Runnables that should be recorded must be activated in the EB
tresos Studio. This needs to be done in the RTE Editor.

Enable VFB tracing [X] o

B Trace hook functions

Enable Trace hook function Category
v Rte Runnable_SWC_verifyThrottleSensor_verify ThrottleSensor_Start Runnable Entity
v Rte_Runnable_SWC_verify ThrottleSensor_verify ThrottleSensor_Return Runnable Entity
Rte_Runnable_DevelopmentErrorTracer_RE_ReportError_Start Runnable Entity
Rte_Runnable DevelopmentErrorTracer RE_ReportError_Return Runnable Entity
v Rte_Runnable_SWC_verifyDecelerationSensorTranslation_verifyDecelerationSensorTranslation_Start Runnable Entity
v Rte_Runnable_SWC_verifyDecelerationSensorTranslation_verifyDecelerationSensorTranslation_Return Runnable Entity
v’ Rte_Runnable_SW_calculateTotalFuelMass_calculateTotalFuellass_Start Runnable Entity
e Rte_Runnable SWC_calculateTotalFuelMass_calculateTotalFuelMass_Return Runnable Entity

Figure 12: VFB Trace Hook Function Selection in the EB tresos RTE Editor

Listing 1 shows a sample OS task generated by the RTE Generator. The task T_Event_Send2Com only a
single Runnable “R_Send2Com”. The Runnable call is surrounded the corresponding start and return
hook function calls.

TASK(T_Event Send2Com)
{
/* scenario Al1/Bl (Bl) */
Rte Task Dispatch (T Event Send2Com) ;
{
/* RunnableEntity R Send2Com */
Rte Runnable SWC Send2Com R Send2Com Start();
R Send2Com () ;
Rte Runnable SWC Send2Com R Send2Com Return();
}
Rte Task EndHook (T Event Send2Com) ;
(void) TerminateTask () ;

} /* TASK(T Event Send2Com) */

Listing 1: Sample OS Task generated by the RTE Generator including start and return hook for the Runnable
R_Send2Com();

14 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

The RTE Generator generates a separate hooks header file for each Software Component (SWC). This
header file defines the default hook function as “void”. Only if there is already a definition of a “real”
hook function the header file declares the hook function as “extern” and assumes the actual
implementation in a C source file provided by the user.

/* */

/* File: ouput\generated\include\Rte SWC Send2Com Hook.h */

/* */

#if defined(Rte_ Runnable SWC_Send2Com R Send2Com Start) && (RTE_VFB TRACE == FALSE)
#undef Rte Runnable SWC Send2Com R Send2Com Start

#endif

#if defined(Rte Runnable SWC Send2Com R Send2Com Start)

#undef Rte Runnable SWC_Send2Com R Send2Com_Start

extern FUNC(void, RTE APPL CODE) Rte Runnable SWC Send2Com R Send2Com Start (void);
#else

#define Rte Runnable SWC Send2Com R Send2Com Start () ((void)O0)

#endif /* Rte Runnable SWC Send2Com R Send2Com Start */

#if defined(Rte Runnable SWC Send2Com R Send2Com Return) && (RTE VFB TRACE ==
FALSE)

#undef Rte Runnable SWC Send2Com R Send2Com Return

#endif

#if defined(Rte Runnable SWC Send2Com R Send2Com Return)

#undef Rte Runnable SWC Send2Com R Send2Com Return

extern FUNC(void, RTE APPL CODE) Rte Runnable SWC Send2Com R Send2Com Return(void);
#else

#define Rte Runnable SWC Send2Com R Send2Com Return () ((void)O0)

#endif /* Rte Runnable SWC Send2Com R Send2Com Return */

Listing 2: Example VFB trace hooks template generated by EB tresos Studio for the
SWC_Send2Com_R_Send2Com Runnable.

3.1.2 RTE VFB Trace Hook Functions

To implement the hooks, it is necessary to define a unique positive integer for each Runnable. The
number O is reserved to indicate a Runnable exit and is used in every return-hook. Once you have
generated a mapping the instrumentation can be added to the source code.

Note that for a multi-core application, the Runnable-ID itself is not sufficient, but the core number
must be written into the global variable as well. The following code works for TriCore microcontrollers
where the core ID can be accessed via the Move From Core Register (ntcr) command. For single core
applications, the part after the exclusive-or can be removed. For other architectures the code to get
the core ID must be adapted.

#define CPU_CORE_ID OxFEIC

isystem trace_runnable = <runnable id> | (_ mfcr (CPU_CORE_ID) << 24);

15 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

Using this code snippet, the implementation of the hooks would look as shown in Listing 3. The global
variable isystem trace runnable must be defined at the beginning of the hooks file as a 32-bit integer.

/*

File: isystemRunnableTrace.c

iSYSTEM Runnble Trace Hook Functions
CPU: TriCore

Trace Concept: Data Trace

*/

unsigned long isystem runnable trace;
/* Runnable Hooks */

/* Start hook of Runnable R Send2Com (ID = 0x01). */
void Rte Runnable SWC Send2Com R Send2Com Start (void) {

isystem runnable trace = 0x01 | (mfcr(CPU CORE ID) << 24); }
/* Return hook of Runnable R Send2Com (common return ID = 0x00). */
void Rte Runnable SWC Send2Com R Send2Com Return (void) {

isystem runnable trace = 0 | (_ mfcr(CPU CORE ID) << 24); }

Listing 3: Sample Implementation of Runnable hooks for an Infineon TriCore microcontroller.

For multiple Runnables the implementation is identical except the Runnable Start ID being unique for
each Start hook.

3.1.3 iSYSTEM Profiler XML File

Typically, run-time analysis on AUTOSAR based applications is done by means of the ORTI file.
However, the ORTI file only covers objects of the AUTOSAR OS, such as tasks and ISR2s.

AUTOSAR Runnable are implemented within the RTE, i.e. are outside the scope of the ORTI file.
iSYSTEM uses a proprietary XML file format to describe the tracing/profiling related aspects of OSes,
hypervisors or AUTOSAR RTE objects which are subject to timing/scheduling to the winIDEA Profiler
(iSYSTEM Profiler XML file).

Such a Profiler XML file can be used to basically extend the ORTI file, with RTE related information such
as Runnables.

The figure below shows a sample profiler XML file used for Runnable profiling based on data trace of
the global variable isystem runnable trace of the VFB trace hook instrumentation.

16 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

<TypeEnum:>
<Name>Types RUNNABLE MAPPING</Nams>
<Enum><Name>R_calculate B</Name:> <Value>1</Value></Enum>
<Enum><Name>R_Send2Com<,Hame> <Value»2</Valuex»</Enum:
<Enum><Name>calculateThrottleSensor<,/Hame> <Value>3</Value></Enum>
<Enum><Name>verifyBrakePedal SensorVoter<,/HNams> <Valuerd</Value></Enum:>
<Enum><Name>processThrottleSensor</Name> <Value>5</Valuer></Enum:>

</ TypeEnum:>
</ Types>

<Profiler:>
<Object>
<Definition>RON<,/Definicion>
<Degcription>*Runnables<,/Description>
<Type>Type RUNNABLE MAPPING</Type:
<Level>Ronnable<,/Level>
{Expression)isystem_runnable_trace{/ExpressiDn)
<Signaling></S5ignaling>
<DefaultValus>0<,/DefaultValues>:
<Runnablez
<MaskID>0xffffff</MaskID>
<MaskCore>0xFFO00000</MaskCore>
<ExitValue>0</ExitValus>
</Runnable:
</Object>

Figure 13: Sample iSYSTEM Profiler XML File for Runnable Profiling based on Data Trace of the VFB Trace Hook
Variable isystem_runnable_trace

In the upper section (“Types”) an enumeration type is defined (“Type_Runnable_ MAPPING”), which
maps a Runnable name, displayed in the winIDEA Profiler to its corresponding ID used by the VFB
instrumentation hook functions.

In the lower section (“Profiler”), a new profiler object is created. It is defined as a “RUN” object using
data tracing of the global variable (i.e. Expression) isystem runnable trace to signal Runnable ID and
core ID. The “Type” tag tell the profiler to use the enum type “Type_Runnable_ MAPPING” for the
Runnable naming.

Alternatively to data trace, also processor-specific variants of instrumentation trace may be used for
Runnable tracing. Such instrumentation trace techniques are for instance, RH850 Software Trace or
ARM CoreSight ITM or STM (see also).

In a typical use-case, these XML file section will actually be part of a more comprehensive Profiler XML
file also used for OS task (and ISR) state tracing.

The trace hardware of the processor needs to be configured for unconditional program trace. Please
refer to Section 0 “

17 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

Hardware Trace Configurations” for the processor-specific settings.

The Profiler only needs to be configured for OS objects profiling. Code profiling is not needed.

Hardware Profiler Coverage RTOS Profiler Options b4
Profile Operating System
[Jcode EE AutoCore State Run Hooks ~
Advanced...
[Jpata Objects to profile

05 objects 05 Setup... % [~|Tasks

[1sRs2
[Jaux
[metwerk []Passpaint
Code Areas]
| Enter filter string(s) Object Info:
Mame: RUM
Definiton: RUN
Description: Runnables
Signaling: isystem_runnable_trace

Figure 14: Profiler Configuration for Runnable Profiling based on Program Trace

But first, the Profiler XML file has to be added to the winIDEA workspace and then the profiler is
configured to use this information. To add the XML file to the workspace execute the following steps.

9. Open the Debug menu.
Debug

10. Open the OS Configuration Dialog.
¥# Operating System...

11. Create a new OS Configuration.

MNew, .,

12. Select OSEK AUTOSAR OS.
OSEK AUTOSAR [

13. Specify a name, for example, EB AutoCore OS.
Mame >

QSEK AUTOSAR
|EB AutoCore State Run Hoolos |

14. Select XML as RTOS description file type.

Property Value
= Configuration
RTOS description file type iISYSTEM XML

RTOS description file location EBAutoCore State RunHoolks xml

15. Select the XML file and click OK.

18 of 27 Application Note

www.isystem.com

Elektrobit EB tresos Runnable Profiling

Ik

16. Make sure to load symbols to make the change active.

s

Next, the winIDEA profiler is configured to use the Profiler XML file, too. To do so execute the following

steps.

9.

10.

11.

12.

13.

14.

15.

16.

19 of 27

Open the profiler configuration. Make sure it is the same configuration for which data tracing
of the XML variables is configured.

.-

&

Select the hardware tab and make sure that the profiler is activated.
Hardware Profiler

Change to the profiler tab and make sure that OS objects are selected.
PrafFiler 05 l:ll:lel:tS

Click on OS Setup and select the OS for which you have added the XML file.

Operating System
05 Setup. .. EE AutoCore State Run Hooks e

Select all tasks and ISRs you want to profile. (Again, only those objects for which the signaling
variable is record will show up in the profiler timeline.)

Ohjects to profile

[]Tasks
[+]15Rs2

Confirm with OK.

Ik

Start a new trace recording.

>

Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

3.2 Hardware Trace Configurations

For most processors the on-chip trace logic needs to be configured for data trace of the Runnable trace
variable used by the instrumentation hooks, e.g. the global variable isystem runnable trace.
However, some processors do not provide a suitable data trace infrastructure. In such cases alternative
trace concepts need to be applied.

Examples for such processors are some Renesas RH850 derivatives or some higher-end Cortex A or R
based devices.

3.2.1 ARM CoreSight System Trace Macrocell (STM)

Most processors based on Cortex A and/or R core do not offer efficient data tracing capabilities. For
instance on a Cortex R7 core, data trace is only available in conjunction with instruction trace and thus
generates massive amount of trace data not really needed for pure Runnable profiling. Moreover, most
Cortex A cores do not offer data trace at all. In such cases, the ARM System Trace Macrocell (STM)
allows for efficient instrumentation tracing.

The concept behind STM trace is that a core can perform data write transactions to a memory mapped
area of the STM, residing on the AXI bus of the processor. This memory mapped area, called the
Stimulus Port, is divided into multiple so-called Channels (256 bytes per channel). A write transaction
to such a STM Stimulus Port Channel causes the STM to emit a STM message via the hardware trace
port. The Channel number is encoded in the STM message can be used to differentiate different
messages types, such as trace messages for task state signaling or for Runnable entry/exit signaling.

In the sample VFB trace hook implementation shown in Listing 4, the STM Channel 1 is used by the R7
core of a RCAR M3 processor to signal Runnable start and return hooks executed by the R7 core.

/*

File: isystemRunnableTrace.c
iSYSTEM Runnble Trace Hook Functions
CPU: RCAR M3, Cortex R7

Trace Concept: STM, Channel 1

=
#define STM32 DTS (ch) *(volatile unsigned int*) (0xE9000010 + (ch*0x100))
#define STM TRACE R7 RUN(value) do { STM32 DTS (0xl) = value; } while (0)

/* Runnable Hooks */

/* Start hook of Runnable R Send2Com (ID = 0x01). */
void Rte Runnable SWC Send2Com R Send2Com Start (void) {
STM TRACE R7 RUN (0x01); }

/* Return hook of Runnable R Send2Com (common return ID = 0x00). */
void Rte Runnable SWC Send2Com R Send2Com Return (void) {
STM TRACE R7 RUN (0x00); }

Listing 4: Sample Implementation of Runnable hooks using ARM CoreSight STM Trace with on a Renesas RCAR
M3 Cortex R7.

20 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

The iISYSTEM Profiler XML needs to be adjusted to use STM trace for Runnable signaling. A sample
iSYSTEM Profiler XML is given Listing 5.

<Profiler>
<Object>
<Definition>RUN</Definition>
<Description>Runnables</Description>
<Type>Type RUNNABLE MAPPING</Type>
<Level>Runnable</Level>
<Expression></Expression>
<Signaling>STM(0x001) (</Signaling>
<DefaultValue>0</DefaultValue>
<Runnable>
<MaskID>0Oxffffff</MaskID>
<MaskCore>0xFF000000</MaskCore>
<ExitValue>0</ExitValue>
</Runnable>
</Object>

Listing 5: iSYSTEM Profiler XML file for Runnable Tracing using ARM CoreSight STM Trace

21 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

3.2.2 RH850 Software Trace

Although all RH850 micro controllers implement a debug and trace logic that is compliant with the
Nexus Class 3+ standard (which also includes data access trace), some derivates do not offer a trace
port to allow for trace data streaming to a hardware trace tool. Instead, only a relatively small on-chip
trace RAM is available, not always sufficient for AUTOSAR OS and Runnable timing analysis. The
alternative solution in these cases is the so-called RH850 Software Trace.

RH850 Software Trace allows signaling specific software events to an external hardware trace tool by
means of the dedicated CPU instructions peTac #imm10 and perusa rx. When the RH850 CPU executes
any of these instructions it causes the on-chip Software Trace module to generate a Software Trace
message. These trace messages can either be stored in an on-chip trace RAM (if implemented) or it
can be streamed out via the LPD4 debug port of the RH850 device. The advantage of the Software
Trace streaming via the LPD4 interface is the fact that this functionality is available on any RH850
derivative. However, the user also has to be aware of its limitations, which are:

e Trace Bandwidth limitation of the LDP4 interface
e No support of multi-core Software Trace
e Requires code instrumentation

As the peTac instruction takes an immediate value as input argument it can be used to create messages
for values which are known at compile time, such as indices of function (Runnable) entries/exits. The
DBPUSH instruction uses a core register as input argument and thus is suited for signaling events which
are only known at run-time, such OS task or ISR2 state changes.

In the sample VFB trace hook implementation in Listing 6 shows how the perac instruction can be used
to signal a Runnable ID in a Start and Return hook function.

/*

File: isystemRunnableTrace.c

iSYSTEM Runnble Trace Hook Functions
CPU: RH850

Trace Concecpt: Software Trace DBTAG
Compiler: GHS

=/
/* DBTAG macro, Value passed as max 10-bit immediate value. */
asm void isystem sft dbtag(value)
{
%con value
dbtag value

}

/* Runnable Hooks */

/* Start hook of Runnable R Send2Com (ID = 0x01). */

void Rte Runnable SWC Send2Com R Send2Com Start (void) {
isystem sft dbtag(0x001); }

/* Return hook of Runnable R Send2Com (common return ID = 0x00). */
void Rte Runnable SWC Send2Com R Send2Com Return (void) {
isystem sft dbtag (0x000) ; }

Listing 6: Sample Implementation of Runnable hooks using RH850 Software Trace.

22 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

The iSYSTEM Profiler XML needs to be adjusted to use RH850 Software Trace for Runnable signaling. A
sample iSYSTEM Profiler XML is given in Listing 7.

<Profiler>
<Object>
<Definition>RUN</Definition>
<Description>Runnables</Description>
<Type>Type RUNNABLE MAPPING</Type>
<Level>Runnable</Level>
<Expression></Expression>
<Signaling>DBTAG</Signaling>
<DefaultValue>0</DefaultValue>
<Runnable>
<MaskID>0x00FFFFFF</MaskID>
<MaskCore>0xFF000000</MaskCore>
<ExitValue>0</ExitValue>
</Runnable>
</Object>
Listing 7: iSYSTEM Profiler XML file for Runnable Tracing using RH850 Software Instruction DBTAG

3.3 winlIDEA Profiler Visualization

The Runnables trace by means of VFB trace hook instrumentation are visualized in the iISYSTEM Profiler
in the same way as described in Section 2.3.

23 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

4 BTF Export

The winlIDEA Profiler supports the export of traces into the BTF format. BTF is a CSV based trace format
that is supported by different timing tool vendors. Before the BTF export is usable the iSYSTEM profiler
XML file must be configured accordingly. The Profiler supports the export of tasks, ISRs, Runnables and
signals. More details on the iSYSTEM Profiler XML configuration can be found in the Application Note
“AN_iSYSTEM_EB_AutoCore_Profiling” or “AN_iSYSTEM_EB_SafetyOS2_Profling”, respectively.

Once the iSYSTEM Profiler XML is updated the following steps must be executed to export a BTF trace
file.

1. Load symbols * to make sure that the updated iSYSTEM Profiler XML is in use.

2. Record a trace with the necessary configuration to record tasks and Runnables.

3. Select the export button in the Profiler timeline, choose BTF export, and export.

Profiler Timeling
@v?v‘ﬁ|| Format BTF e

4. This generates a BTF trace file which matches the profiler timeline as shown in Error! R
eference source not found..

Figure 15 shows a small section of a sample BTF Export, covering the response time of the task
“SchMComTask_1ms” including the Runnables mapped into this task, “Can_MainFunction_Mode” and

“Can_FlexCan_MainFunctionMode”.
Profiler Timeline

G-FRLE B & oA|saRBAARAR

Dus B80us 90us
1 ! P — PR — P T—

Data History
$& Can_MainFunction_Mode
J&, Can_FlexCan_MainFunctionMode
] Eﬁ Tasks
-1 Il SchMComTask_1lms
I8l SUSPENDED
IEl QUARANTINED

|
|
|
I NEW [—

Il READY_SYNC
Bl READY_ASYNC
I8l RUNNING
Il WAITING

71232, 5TI_SchMComTask 1ms,0,T, SchMComTask lms,0,activate

84032,CORE_0,0,T, SchMComTask 1lms,0,start

85857, 5chMComTask lms,0,R,Can MainFunction Mode, O, start

86249, 5chMComTask 1ms,0,R,Can MainFunction Mode, O, terminate

56347, 5chMComTask lms,0,R,Can FlexCan MainFunctionMode, PR MPC574XG simple demo can rte.elf, 0, startc
87251, 5chMComTask 1ms,0,R,Can FlexCan MainFunctionMode,, PR MPC574XG simple demo can rte.elf,0,terminate
80760,CORE_0,0,T,SchMComTask 1ms,0,terminate

Figure 15: Sample BTF Export of OS tasks and Runnables

24 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

5 Inspectors

Inspectors are a winIDEA feature to analyze user-defined metrics in the winIDEA profiler timeline. It
allows the creation of new Profiler objects, so called Inspectors, which can change their state
depending on different events, such as state changes of other objects and timing parameters. This
section demonstrates how inspectors can be used to cover certain advanced timing-analysis use-cases
for AUTOSAR Runnables.

5.1 Runnable Call-Time Timing Constraint

An Inspector can for instance be used to check whether a Runnable exceeds its timing budget in terms
of elapsed time between Runnable Entry and Exit, i.e. its execution time including all sub-function calls
and task/ISR preemptions (may also be called Response Time).

Once such an Inspector has been configured, additional Profiler objects will appear in the Profiler

Timeline (and also in the Statistics). Inspector Objects can be identified by the ¥ symbol.
An Inspector Object can be seen as a Finite State Machine (FSM), which changes its state upon user-
defined events.

Figure 16 shows an Inspector called “SWC_Cyclic_CallTime_Constraint” which has the states
“WithinConstraint” and “Violation”. The FSM enters the “WithinConstraint” state upon entry into the
Runnable. It exits this state back to its default state upon the exit of the Runnable. However, in case
the Call Time exceeds the specified timing budget (in this example 123500 ns), the state changes to
“Violation”.

l s 1D[I:ms ZDDlms 3[)[,‘;ms 40[!:m5 SDDlms

IE] Runnables

SR SWC CyclicCounter_Cyclic

IR IRRERRRR NN |

-~ SWC_Cyclic_CallTime_cContraint JTTTTATTTTTTTTTTT |

% Vielation AERRN INRERREE A |

7V withinContraint IERRRIRRRRRRRRAN |

Figure 16: iSYSTEM Profiler Timeline of the Runnable “SWC_CyclicCounter_Counter” including
Inspector which checks for Violations of a specified Call Time Timing Constraint.

Profiler

o | —— ——

The trace recording in Figure 16 spans of a time period of 500ms and it can easily be recognized that
timing violation have occurred.

In addition, the “Properties” view of the “Violation” object (Inspector state “Violation”) can be open
as shown in Figure 17.

] I{_f] Runnables
-~ #& SWC_CyclicCounter_Cyclic

=~ SWC_Cyclic_CallTime_Contraint IT
v : Zoom I* I
7 Withir

Fe Can_MainFu Go To ’

#&, Com_MainFu Markers 3

Fe Com_MainFu Eind N

F& Com_MainFu _

B SWC_Modify A g

F& SWC_Cyclic -

i suc Cyclic| Properties... Alt + Enter!ﬁ

Figure 17: Opening the “Properties” View for the Profiler Object “Violation”

The Properties view provides the measurements for average, maximum and minimum net time (i.e.
“Violation” time) along with the time (and link “->”) of its occurrence.

25 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

= E’_“I Runnables

|
- & SWC_CyelicCounter_Cyclic Met Time 15,646 us
- SWC_Cyclic_CallTime_Contraint
v Average Occurred at tme

Vi
7 WithinContraint Max | 508 ns | [462.355864ms
#& Can_MainFunction_Mode Min | ons | | 22,294314 ms

fr. ram MadnBone+d AanbDy

Figure 18: Net Time Properties for the “Violation” Inspector Object. The maximum Timing Violation of 508ns
occurred at trace time stamp 462.35ms.

Figure 19 shows the instance of the Runnable “SWC_CycleCounter_Cyclic” which results in the
maximum timing violation.

Profiler Timeline

G-¥YLL B dAlmFhHAARRQ Totel

462ms 200us 462ms 250us 462ms 300us 462ms 350us
P PP T Y TR T T T T PO TP PRI T TR TN P TR PTTUT T TR IR P AT PN PR T PO T PO TP PP TP
Data History
= I{_’_“]Runnatfies

= & swClewyclicCounter Cyclic | | | Ll [N NI [T I [1 T N A
= ¥ SWC_Cyclic_CallTime_Contraint . i |
<7 Wiolation| 1

7 WithinContraint
& Can_MainFunction_Mode

£, Com_MainFunctionRx HENEEE

f&; Com_MainFunctionRouteSignals |

£, Com_MainFunctionTx IR
£ SWC_ModifyEcho_ModifyEcho

£ SWC_CyclicCounter_Shutdown

£ SWC_CyclicCounter_Init

f&; EcuM_MainFunction

f&, BswM MainFunction

Used 1.1G / Free 96.4G -228.43 us (4.38kHz) W462.26 msB462.23 ms[1462.26 msH1124.01 us (3.06kHz)

Figure 19: Zoomed View of the maximum Timing Violation occurrence

Inspectors can be created or modified either within the winIDEA GUI or as a textual representation in
form of a JSON file.

The Inspector Dialog of the winIDEA GUI can be open within the iSYSTEM Profiler Timeline window, by
clicking the “Inspectors” icon as shown in Figure 20.

A R CIPIFIE

Figure 20: “Inspectors” Icon within the Profiler Timeline Window

Figure 21 shows the configuration dialog of the sample Inspector “SWC_Cycle_CallTime_Contraint”.

Inspector 3

Mame ‘ SWC_Cylic_Callime_Contraint |

Visible
Parents Events
Area Add... Name Area Type Trigger Formula Add...
Data/Runnables/SWC_CydicCounter_Cydic A RUM_Entry_Event SWC_CydicCount.., Event Entry ! 7
Ei RUN_Exit_Event SWC_CycicCount... Event Exit / iic
Remove Remove
< >
States Time constraints
Default state | Default ~ Mame Formula Add...
timeViolation ($({TIME) - RUN_Entry_Event) > 123500
Name Visble Transitions Add... Edit...
Violation Yes Default e T :
WithinContraint Yes Violation, Default e S
Default No WithinContraint
Remove

Figure 21: Configuration Dialog for the Inspector “SWC_Cycle_CallTime_Contraint”

26 of 27 Application Note
www.isystem.com

Elektrobit EB tresos Runnable Profiling

6 Technical Support

6.1 Online Resources

Online Help #

winIDEA and testIDEA
online help

Technical Notes ¥

How-tos for winIDEA
functionalities with scripts

6.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

Knowledge Base #

Tips & tricks categorized by
issue type and architecture

Application Notes

How-to notes on advanced
use-cases

Tutorials ¥

From beginner to expert

Webinars ¥

Technical webinars about
ISYSTEM tools with use cases

iSYSTEM has made every effort to ensure the accuracy and reliability of the information provided in
this document at the time of publishing. Whilst iSYSTEM reserves the right to make changes to its
products and/or the specifications detailed herein, it does not make any representations or
commitments to update this document.

© iSYSTEM. All rights reserved.

27 of 27

www.isystem.com

Application Note

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

