Vector MICROSAR Profiling

Updated: 08/07/2020

This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.

Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.

All trademarks are property of their respective owners.

iSYSTEM is an ISO 9001 certified company

Vector MICROSAR Profiling

Table of Contents

1 [[aN Ao Yo [T Lot To] s TN 2
2 GeNEric OS CoONFIGUIATION ...ueiiiiiee e e e e e et e e e et ae e e e eabae e e e enraeeeeeaneeas 3
2.1 Configure ORTI SUPPOIT ..uviieeiiiee ettt ettt et e e e e e tre e e e erae e e e eabae e e eenbaee e eenraeeeeenneeas 3
2.2 Y] U] o I 1 PSR 3
2.3 O] o] SN @ R T o 1T = o To o SRS 4
2.4 ENGDI@ VFB TraCe HOOKS.....uuueiiiiieiieeee ettt e e e e e ettt e e e e e e saaaaaeeeees 4
3 L0 SR O LY <L 5
3.1 RUNNING Task/ISR Via Data TraCe....cccueeeereeereeeeteeeeteeeeteeeeeeeeeteeeeaeeeteeeeteeeeaeeeereeeeareeeeneeeeanas 5
3.2 Running Task/ISR via INStrumentation TraCe.......ccccveireeireeiieiie e ecie et e s eee e e eeae e 6
33 Task State/RUnning ISR via Data TraCe ..ccucvieeeeeiieieeieeeteeereectre e eteesteesreestaesaeeteesreesbee e 7
3.4 Task State/Running ISR via Instrumented Data TraCeccceeeeveeeeveeiveeeeiee et e eeree e 11
3.5 Task State/Running ISR via Instrumentation Trace........cccvevueeereeiiieieecee et e sree e 12
3.6 Runnables via Program FIOW TraCe.....ccuuiiiiiiiieeeiiiieeecirieeecieeeesitee e s e e s vae e e s svae e s e sneeeas 13
3.7 Runnables via INStrumented Data TraCe........uuuueuuuererererererererirersineerssesseerereenseeeneseeenene—————— 14
3.8 Runnables via INStrumentation TraCe ueeueeeerereeeeerereeerereeerereeerererseereeeeeeeeeeen.—.———————————— 15
4 Generic Profiler/Trace CoONfigUratioNnc.oiociieiiiieiee ettt ettt e are e v 16
4.1 Configure OS/RTE PrOfiliNg ..ecccueeeeieeiiee ettt ettt et et eaee e et eanas 16
4.2 INFINEON TrICOrE DAta TrACE ..uuuuuureeerereririierereieteietaeereeerererarereserersrarerarerarerareaesarerasesarasasesennnes 17
4.3 ReNesas RHB50 SOTTWAIE TrACEuuuuuuuruierereieieieierereeeessesesssesesesseseeresessessesesssesenesesansnnsennnanes 20
4.4 2 N =5 0T] o N 21
5 LE=Tel a1 1o BT o] o Lo o AP PPR 22
5.1 ONENE RESOUICES ..o 22
5.2 (0] o) =1 AR 22
1 of 22 Application Note

www.isystem.com

Vector MICROSAR Profiling

1 Introduction

In this document, we explain how to profile and analyze the timing-behavior of Vector MICROSAR
based AUTOSAR applications. You should be familiar with AUTOSAR classic profiling, the different types
of profiling objects (e.g., tasks, ISRs and Runnables) and the trace capabilities available on your
microcontroller to properly utilize this resource. If you are not familiar with these topics, consider
watching our Introduction to AUTOSAR Classic Profiling webinar and consult our Introduction to
AUTOSAR Classic Profiling application note and then come back to this document.

Once you know the types of objects you want to record and the available trace techniques available
on your microcontroller, you can use Table 1 to jump to the section within this document that explains
that use-case. We recommend that you first read the rest of this introduction, then follow the steps in
the Generic OS Configuration section, and then consult the chapters for your specific use-cases. You
do not have to read the complete document. In each section, we also link to the relevant part in our
Vector MICROSAR Profiling webinars in case you prefer video over the textual guide. Watching the
videos might also help to resolve unexpected issues.

Table 1: Links to the step by step configuration guides for the different profiling use-cases.

Running Task/ Task State/ Runnables
ISR Running ISR
Program Flow Runnables via Program
Trace Flow Trace
Data Trace Running Task/ISR via Task State/Running ISR via
Data Trace Data Trace
Instrumented Task State/Running ISR via | Runnables via
Data Trace Instrumented Data Trace Instrumented Data Trace
Instrumentation | Running Task/ISR via Task State/Running ISR via | Runnables via
Trace Instrumentation Trace | Instrumentation Trace Instrumentation Trace

Each section follows the same steps. First, you configure the OS or RTE to make the information about
the trace objects available for profiling in winIDEA. For instrumentation-based use-cases, you must
generate the instrumentation code and recompile the application. Next, you make winIDEA aware of
the different profiling objects by creating an iSYSTEM Profiler XML with iTCHi (iSYSTEM Trace
Configuration Helper iTCHi). Finally, you configure the hardware trace on the microcontroller to record
the OS and RTE objects for the profiling. Depending on the use-case, winIDEA might be able to do this
step automatically, though manual configuration leads to a better understanding of the underlying
trace logic on the silicon.

2 of 22 Application Note

www.isystem.com

https://youtu.be/Zdsxor_TGaY
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/application-notes.html

Vector MICROSAR Profiling

2 Generic OS Configuration

This chapter explains the configuration steps shared by different use-cases. Configure ORTI Support
and Setup iTCHi are required. The other sub-sections are only relevant for particular use-cases.

2.1 Configure ORTI Support

An OSEK Runtime Interface (ORTI) file is mandatory for all Task and ISR based use-cases. To enable
ORTI support, do the following steps:

1. Inthe DaVinci Configurator, open the Basic Editor.
GT, Basic Editor
2. Inthe Basic Editor, open the OS node.
o 05
3. Navigate to the OsOS node and select the OsDebug node.
w i Q0s0%
£ CsDebug

4. Activate ORTI Debug Support by selecting ORTI_23_STANDARD or ORTI_23_ADDITIONAL.

After these steps regenerate the OS and you should now have an os_trace.orr file in your generated
data directory appl\Genbata.

2.2 Setup iTCHi

The iSYSTEM Trace Configuration Helper iTCHi helps the user by automatically generating the iSYSTEM
Profiler XML file and instrumentation code. Figure 1 shows the input and output files for the different
iTCHi commands. The ORTI file is a necessary input file, and iTCHi always generates the Profiler XML as
an output file. The other fields are use-case specific.

Ba Profiler.xml
Os_Trace.ORT B Rte_Hook_isystem.c
Rte_Hook.h —» Os_TimingHooks_isystem.h
—> Inspectors.json

Figure 1: iTCHi helps the user to generate an iSYSTEM Profiler XML file and instrumentation code.

To start using iTCHi, navigate to the scripts/itchi directory within your winIDEA installation. In case that
directory is not available, download a newer winIDEA version or ask the iSYSTEM Support to provide
iTCHi to you. Once you have iTCHi available, the folder contains the iTCHi executable itchi-bin.exe and
the documentation readme.html. Open a command window (terminal) in that directory and run itchi-
bin.exe --help. This command should output the available iTCHi commands, including a short
explanation. Next, generate an empty iTCHi configuration file by running itchi-bin.exe --
write default config. This command creates an empty itchi.json in the current directory. It includes
empty attributes for the different use-cases. Start by pointing the ORTI file attribute to your ORTI file
and specify a Profiler XML file, for example, profiler.xml. Keep in mind that iTCHi resolves relative
paths relative to the JSON configuration file.

30of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

2.3 Enable OS Timing Hooks

Timing-Hooks are only available in the following versions of MICROSAR. In generation 6, Timing-Hooks
are available in versions 9.01.00 and higher. In gen 7, Timing-Hooks are available in versions 01.07.00
and higher. The version numbers are part of the OS source headers.

Follow these steps to enable the Vector OS Timing-Hooks. The chapter about your specific use-case
covers how to implement the hook file.

1. Inthe DaVinci Configurator, open the Basic Editor.
Eu'ﬂ Basic Editor
2. Inthe Basic Editor, open the OS node.

o 05
3. Navigate to the OsOS node and select the OsDebug node.
w i Q0s0%
£ CsDebug
4. Locate the Timing Hooks Include Header section and click the add symbol.
Timing Hooks Include Header gk

5. Double click the new box and call it Os_TimingHooks_isystem.h.

Timing Hooks Include Header

kol Os_TimingHooks_isystem.h
x

6. Regenerate the 0S .

2.4 Enable VFB Trace Hooks

To record Runnables via instrumentation, you must enable the so-called Virtual Function Bus (VFB)
trace hooks in DaVinci Configurator. These hooks allow instrumentation of RTE related events such as
Runnable starts and returns. The chapter about your specific use-case covers how to implement the
hooks with iTCHi.

1. Open Runtime System General in the Runtime System node.
Euntime System General
2. Expand the RTE tab and select VFB Tracing.
~ B2 RTE bfis VFB Tracing
3. Enable VFB Tracing.
Enable ¥FE Tracing: -
4. Start the Import VFB Functions Assistant.
Import W¥EB Trace Functions Assistant
5. On the first page of the wizard, select the RTE hook file to keep the default configuration.
6. On the next page, change the trace functions to be imported from All to Selected.

7. Select the start and return hook for each Runnable you want to profile:
a. Rte Runnable <SWC> <Runnable> [Return|Start]

b. For example, if you want to profile the Runnable with the name core2 runnable 5ms
select the respective start and return hooks:
Rte Runnable_SWC_Cored SWC_Cored_Runnable_>ms_Return

ol .tc_Runnable SWE_Cored SWC_Cored Runnable >ms_Start
8. Finish the wizard. The selected hooks should now appear in the VFB Trace Functions window.
9. Regenerate the OS and the RTE #.
10. You can find the enabled hooks in rte_Hook.h. iTCHi uses this file to implement the hooks.

4 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

3 Use-Cases

This chapter explains the different OS and RTE profiling use-cases. Refer to Table 1 to find which
options work for your setup. You can combine multiple use-cases with the same iSYSTEM Profiler XML
file. For example, it is common to combine data-trace based Task State/Running ISR with
instrumentation-based Runnable Profiling. Simply configure the different use-cases one after another
using the same iTCHi configuration and Prifler XML file.

3.1 Running Task/ISR via Data Trace

This section explains how to profile the running Task/ISR via data-trace. We also cover this use-case in
our MICROSAR Profiling Webinar. We do not use the iSYSTEM Profiler XML in the webinar, but it is the
preferred approach. Running Task/ISR Profiling relies on the two ORTI attributes RUNNINGTASK and
RUNNINGISR. Each attribute points to a global variable that winIDEA uses to profile the respective
object. The listing below shows that section from the ORTI file. For a multi-core application, there is
one attribute pair for each core.

RUNNINGTASK = "OsCfg Trace OsCore Core(O Dyn.CurrentTask";
RUNNINGISR2 = "OsCfg Trace OsCore Core(O Dyn.CurrentIsr";

Listing 1: ORTI Attributes for single core application.

Start by referencing the ORTI and the Profiler XML file from the iTCHi configuration file. Your
configuration file should have the contents shown in the following listing.

{
"orti file": "Os Trace.ORT",
"profiler xml file": "Profiler.xml"

}
Listing 2: iTCHi configuration for Running Task/ISR Profiling.

You are now ready to create the Profiler XML file by running itchi-bin.exe --running taskisr. Once
you have this file available, you can follow the Configure OS/RTE Profiling section.

For single-core applications, you can start recording right away, because winIDEA can do the trace
configuration for you. However, for multi-core microcontrollers, winIDEA might not be able to
configure the trace automatically. In this case, you must set the trace hardware on the microcontroller
to record all necessary variables. You can find the required variables in the Profiler configuration menu
under OS Setup, as shown in Figure 2. For each ORTI object, winIDEA shows the respective global
variable in the Object Info under Signaling.

RTOS Profiler Options X

Operating System

orti ~

Objects to profile

7] Core 3: Tasks
[Core 4: Tasks
] Core 5 Tasks
[Core 0: 15Rs2 v

Object Info:

Mame: RUNNINGTASK[1]

Definiton: RUNNINGTASK[1]

Description: Core 1: Tasl

Signaling: 0sCfy_Trace_OsCore_Corel_Dyn. CurrentTe

Address Space

Oall
(O selected v

Cancel
Figure 2: The RTOS Profiler Options menu shows the Running Task and Running ISR objects. For multi-core
applications, you must manually configure the data-trace for each of the cores.

Once the application is running and you start a recording, you should see Tasks and ISRs, as shown in
Figure 3. If you do not see any data, check the trace window for write accesses to the global variables.

5 of 22 Application Note
www.isystem.com

https://youtu.be/iSTpiDJK0VU?t=289

Vector MICROSAR Profiling

In case you cannot see any write events try to configure the data-trace manually. Also, make sure the
data section in the profiler timeline is visible and zoomed out far enough.

Two potential errors can occur when you start the recording. First, winIDEA might complain about too
many data-areas. This error means winIDEA cannot figure out how to configure the data-trace
automatically, and you have to set the hardware trace manually. Second, winIDEA might complain
about a missing default IRQ. To resolve this error, open the Profiler XML and rename INVALID_ISR to
NO_ISR. For a more permanent solution, specify the default_isr2 attribute in the iTCHi configuration
file and re-run iTCHi.

Profiler Timeline X
G- LR B4 o A FHRAQAUR A Total 1026 5
10ms 20ms 30ms ADms
P U U EU I [B [B
Data History
-l Core @: Tasks] ——— e |
I Default_Appl_Task ERERREERRERERERRRERRRERRRERRR

IMl Default_EBSH_dsync_Task_Core_@ | | | | | |
IHl Default_EBSH_Sync_Task |

I Default_Background_Task T T T I T I T T I T T T
Il Default Init Task |
Iol OsHighPrioEthTask | | | | | | [IIT1I

Inl OsLowPrioHemTask | | | | | |
I Core 1: Tasks 0 r
I8 Default_EBSH_dsync_Task_Core_1 |
IH Default_Indit_Task_@@l |
I8 IdleTask_OsCore Corel |
B User_Task_Core_1_l@@ms CCTr] T
I User Task_Core_ 1 20ms B B
Inl User_Task_Core_1_Sms | | | | | | |
+ IEICDI"E 2: Tasks . T T T T

5 . T T T T

Figure 3: ORTI running Task/ISR trace in the winIDEA Profiler Timeline.

3.2 Running Task/ISR via Instrumentation Trace

Some microcontrollers do not provide data, but instrumentation trace. Instrumentation trace means
adding instrumentation to the code that generates hardware trace messages. On RH850 based
microcontrollers, Renesas call this feature Software Trace. On PowerPC based microcontrollers, it is
called Ownership Trace Messages (OTM).

Here, we cover how to record a running Task/ISR trace via Renesas RH850 software trace because it is
the use-case most commonly utilized by our customers. Note that this use-case only works for single-
core applications. For multi-core applications, please follow Task State/Running ISR via Instrumented
Data Trace section.

Start by enabling the operating system timing-hooks, as explained in Enable OS Timing Hooks. Next,
we need to implement the instrumentation for the hooks:

1. Navigate into the App/\GenData directory and create a new file Os_TimingHooks_isystem.h.
2. Copy the content from Listing 3 into the file and save it.
3. Build the application by running .\m.bat depend and .\m.bat in the build directory.

The instrumentation code generates a software trace message with the identifier of the newly running
thread whenever it changes. Note that thread is an umbrella term for both tasks and ISRs.
Consequently, winIDEA can profile both objects by utilizing a single instrumentation hook.

6 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

asm void isystem profile thread(val)
{
reg val

mov val, rl0

dbpush rl10-r10

}

#define OS _VTH SCHEDULE (FromThreadId, FromThreadReason, ToThreadId, ToThreadReason,
CallerCoreId) \

{\
isystem profile thread(ToThreadId); \

}
Listing 3: Code for isystem_hooks.h to profile the currently running thread via Renesas software trace.

To make winIDEA aware of the instrumentation, you must generate a Profiler XML. For this specific
use-case, manual editing of the Profiler XML is necessary. First, create an iTCHi configuration file with
the following content.

{
"orti file": "Os Trace.ORT",
"profiler xml file": "Profiler.xml"

}

Then run iTCHi by executing itchi-bin.exe —-task state instrumentation in the terminal. Manually
edit the newly generated Profiler XML file. Scroll down to the Profiler section and add a new object, as
shown in Listing 3.

<Object>
<Type>TypeEnum ThreadMapping</Type>
<Name>Threads Instrumentation</Name>
<Definition>Threads Instrumentation Definition</Definition>
<Description>Threads</Description>
<Signaling>DBPUSH (10)</Signaling>
<DefaultValue>NO THREAD</DefaultValue>
<Level>Tasks</Level>

</Object>

Listing 3: The profiler object to record threads via Renesas RH850 software trace.

When you re-run iTCHi, for example, after you have added new tasks to the OS, iTCHi leaves this object
alone, i.e., you only must make this manual change once. You can now add the Profiler XML file to
winIDEA, as explained in the Configure OS/RTE Profiling section. Make sure you select the
Threads_Instrumentation object in the OS Setup menu. Usually, winIDEA can configure software trace
automatically, but if you do not see any data, you can follow the Renesas RH850 Software Trace
section. Congratulations, you now have a Running Thread trace that includes tasks and ISRs.

3.3 Task State/Running ISR via Data Trace

Running Task profiling provides no information about the reason for a task context switch. With Task
State Profiling, you get the additional information about why a switch has occurred, for example,
because of preemption by a higher priority task. This section explains how to profile Task
State/Running ISR information with Data Tracing.

Depending on the MICROSAR version you are using, there are two different approaches for how to set
up this use-case. Older MICROSAR OS versions have a so-called task state array. That is an array in
which each field represents the state of a task. Newer MICROSAR versions have a so-called complex
expression for the task state. That means the state information for each task depends on multiple
variables. Search for TASK objects in your ORTI variable and examine the STATE attribute to find out
which approach is the right one for your application.

7 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

3.3.1 Task State Simple Variable

If you have an older MICROSAR OS version, your Task objects look as shown in Listing 4.

TASK osSystemExtendedTask {
PRIORITY = "osTcbActualPrio[0]";
vs_HomePriority = "0";

STATE = "osTcbTaskState[0]";
/* other attributes here */
}; /* osSystemExtendedTask*/

Listing 4: Task object ORTI definition with a simple STATE variable.

For this use-case, you need a minimal iTCHi configuration file.

{
"orti file": "Os Trace.ORT",
"profiler xml file": "Profiler.xml"

}

You can then generate the Profiler XML file by running itchi-bin.exe --task state single variable.
Add the Profiler XML to winIDEA and configure the data-trace to record the complete osTcbTaskState-
Array. You can now start profiling.

Note that there is no state model for ISRs. We still profile ISRs via the running ISR variable. In some
older versions of MICROSAR, the ISR variable contains a pointer, as shown in the following listing.

RUNNINGISR2 = "osConfigBlock.CcbAddress->LockIsNotNeeded.ossActiveISRID";

If this is the case, winIDEA might complain once you start profiling. Usually, there exists a non-pointer
symbol that maps to the same address. To find that variable, enter the pointer into the watch window
in winlDEA.

E ozConfigElock. Cochiddress [PLr(0=70010C44) = PLr (o2CtrliVarsCorel)

You can see that the pointer references the regular symbol osCtr/VarsCore0. Update your iTCHi
configuration so that iTCHi automatically writes the correct symbol into the Profiler XML file, as shown
in the following listing.

{

"orti file": "Os Trace.ORT",
"profiler xml file": "Profiler.xml",
"running taskisr": {

"search replace list": [
["osConfigBlock.CcbAddress->", "osCtrlVarsCore(O"]
1
}
}

Do not forget to re-run iTCHi with the same flag as before. The Running ISR variable in the Profiler XML
file does not contain a pointer anymore. You can profile the Task State and the Running ISR without
further issues.

8 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

3.3.2 Task State Complex Expression

In newer MICROSAR versions, task states have sophisticated STATE attributes consisting of multiple
symbols, as shown in Listing 5. The winIDEA Analyzer can profile these expressions with the help of
winlIDEA Inspectors. This use-case is non-trivial, so we recommend watching the webinar in addition
to reading this section.

TASK Default Appl Init Task {
PRIORITY = "OsCfg Task Default Appl Init Task Dyn.Priority";
STATE = "OsCfg Core OsCore Core0O Status Dyn.OsState == 2 ? (
OsCfg Trace OsCore CoreO Dyn.CurrentTask == &0sCfg Trace Default Appl Init Task ? 0
: 0sCfg Task Default Appl Init Task Dyn.State) : OxFF";
/* other attributes here */
}; /* Default Appl Init Task */
Listing 5: Task object ORTI definition with a complex STATE variable.

First, create an iTCHi configuration file, as shown in Listing 6.

{

"orti file": "Os_ Trace.ORT",
"profiler xml file": "Profiler.xml",
"task state": {
"task to core heuristic": true
by
"task state inspectors": {
"inspectors file": "Inspectors.json",
"constant variables": {

"OsCfg Core OsCore Core0 Status Dyn.OsState": 2,
"OsCfg Core OsCore Corel Status Dyn.OsState": 2
b
"parent area template": "Data/Core {core id}: Tasks/{task name}",
"default state": "UNKNOWN"
}
}

Listing 6: iTCHi configuration for task state profiling with complex state variables.

You are familiar with the ORTI and Profiler XML attributes. In addition to them, there are two new
objects: task_state and task_state_inspectors. We set task_to_core_heuristic to true. That enables
iTCHi to infer the task to core mapping from the ORTI file automatically.

The other object, task_state_inspectors, helps iTCHi to generate a working inspectors file. The profiler
XML automatically references this file allowing the profiler to reconstruct the task states.

The only field you update here is constant_variables. If you look back to Listing 5, you see that the first
part of the expression checks whether the OS application of the task is running (2 maps to the Running
state for OS applications), as shown in the following listing.

OsCfg Core OsCore_ Core(_Status Dyn.OsState == 2

The operating system only writes to this variable once at the startup of the application. If we start
tracing at a later point, the profiler will never know the current value of the variable. To avoid this
problem, we tell iTCHi that it can ignore this variable by setting it to 2 manually, as shown in Listing 6.
Depending on how many cores your application uses, this variable may have a different name, or there
might be multiple variables (one for each OS application). You have to extend the list so that each of
them gets a constant value of 2. Make sure to not add a comma for the last pair in the list.

You can now generate the Profiler XML and the Inspectors JSON file by running itchi-bin.exe --
task state complex expression, and add the Profiler XML file to winIDEA as explained in Configure
OS/RTE Profiling.

Next, we have to record all the other variables that are part of the state expression. There is one
running Task variable for each core that is part of the expression:

OsCfg Trace OsCore CoreO Dyn.CurrentTask
9 of 22 Application Note
www.isystem.com

https://www.isystem.com/downloads/winIDEA/help/profiler-inspectors.html?zoom_highlightsub=inspectors
https://youtu.be/iSTpiDJK0VU?t=1275

Vector MICROSAR Profiling

Additionally, there is a state variable that is part of a structure for each task. The linker allocates the
structs to consecutive memory areas. Therefore, the most efficient way to trace the state variables is
to configure the data-trace so that it records all accesses to the full list of structs. The configuration
depends on the microcontroller in use.

OsCfg Task Default Appl Init Task Dyn.State

Once the trace contains the write accesses to the state variables, the profiler must display them. The
Inspectors can then reference the values to reconstruct the task states. To show the state variables
add them in the winIDEA profiler data tab under Data Areas. Also, make sure to enable data profiling.
Add the state variables without braces, as shown in the following screenshot.

Data Areas

[Trace] OsCfg_Task_Default_Init_Task_Core2_Dyn.State -~ New =
[Trace] OsCfg_Task_Default_Task_Core2_Dyn.State

[Trace] OsCfg_Task_IdleTask_OsCore_Core2_Dyn.State Edit...
[Trace] OsCfg_Task_UserTask_100ms_Core2_Dyn.State

[Trace] OsCfg_Task_UserTask_1ms_Core2_Dyn.State w Remove

Since the Analyzer automatically includes the Inspectors file, you can now start a recording, as shown
in Figure 4. Note the task-states (indicated by the filter icons) and the data areas for the states. The
first thing to check if the inspectors do not change is if the respective data areas are part of the profiler
timeline. Also, read the output window to see if there are any issues.

Profiler Timeline + X

@-¥ R E 8|4l A8 FRRAR R Total 60508 5
15 . 30!ns . 31[ns . 32[ns . 33[ns . 34|"ns . 35|"ns . 35!ns . 37[ns . SB[ns . 39[ns . AC
Data History ~
I OsLowPrioMemTask |
M UserTask_1@@ms_Core8 []
M UserTask_1ms_Cored] [] [1] [1] [] [] [] [] [1] [1] []
= B UserTask_26ms_Cored . K. K K §® §& B
Hs]]]]]] H
HA \ \ \ | \ \ \
o I I S S N S .
7 RUMNING I N S NS N S .
7 READY || || || || | | |
7 SUSPENDED 1 [
7 UNKNOWN
7 READY_ISR I I I I 11 I
#- Bl Unknown_CORE_@
= 1 0sCfg_Task_UserTask_20ms_Core®_Dyn.State 1 I
M READY 1
B SUSPENDED | . |
=11 Core 1: Tasks B — I [l [l [l [l [l [l [l =
= 1 Core 2: Tasks t T T ¥ ¥ ¥ T T ¥

-1 Core @: ISRs2

+ K& Core 1: ISRs2

=11 Core 2: ISRs2

11 0sCfg_Task_Default_Task_Core2_Dyn.State LT
B 0sCfg_Task_UserTask_168ms_Core2 Dyn.State

v

Figure 4: Task state profiling via data tracing for complex expressions. Inspectors (filter icon) reconstruct the state
from multiple variables.

10 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

3.4 Task State/Running ISR via Instrumented Data Trace

This section describes how to record a Task/ISRs State Trace by using the Vector Timing-Hooks. Timing-
Hooks are OS macros which, if implemented, execute at points of interest in the scheduling routines
of the OS. For more information about Timing-Hooks, refer to the Vector OS reference manual.
Vector MICROSAR OS versions that support the timing-hooks no longer explicitly differentiate between
Tasks and ISRs. The umbrella-term thread refers to both types of objects and the same hooks signal
information for Tasks and ISRs.

This section explains how to do Task State/Running ISR profiling by instrumenting the Vector OS
Timing-Hooks. A video guide for this use-case is also available as a webinar.

Start by enabling the Timing-Hooks as explained in Enable OS Timing Hooks. Next, generate the Profiler
XML and the implementation of the hooks with iTCHi. Use the following listing as a starting point for
your iTCHi configuration file.

{
"orti file": Os Trace.ORT",
"profiler xml file": "Profiler.xml",
"task state instrumentation": {
"template directory": "./"
}
}

Listing 7: iTCHi configuration for Task State/Running ISR profiling via instrumented data-trace.

You can see that the configuration only includes an additional attribute to indicate the directory to
which iTCHi should save the instrumentation files. You can either generate the code into the current
directory or directly provide the path to your Vector MICROSAR GenData directory.

With the configuration file in place, you can now run .\itchi-bin.exe --task state instrumentation.
This command generates the Profiler XML file as well as two instrumentation files:
Os_TimingHooks isystem.h and Os_TimingHooks isystem.c.

The header file should have the same name as the hook implementation file specified in DaVinci
Configurator. You can examine the header file to verify that it implements three OS timing-hooks. Each
hook includes the core information, the new state of a thread, and the thread identifier. The hook
implementation merges this information into a single value and writes it into the global variable
isystem trace.

The first hook os vra scuepure signals a thread context change; the currently running thread is
preempted, terminated, or goes into the waiting state, and a new thread starts executing. This hook
requires two writes, to signal the latest state of the old thread, as well as the thread which is running
next. The hook os vru acrrvarion indicates when a new thread is activated. Finally, os vra seTEVENT
means that the OS sets an event for a specific thread. If the state of that respective thread changes,
this indicates a state change from the waiting into the ready state.

The instrumentation derives state identifiers from the existing definitions for the FromThreadReason
and ToThreadReason arguments. The OS header file Osint.h contains these defines.

The only purpose of the C-file is to define the global iISYSTEM trace variable. You can adapt the
definition for your processor architecture. By default, we use the at preprocessor-macro to map the
variable into global uncached LMU-RAM on Infineon TriCore microcontrollers.

After you have adapted the instrumentation, rebuild the application with the new hook files.

1. Copy the files into the appi\Genpata directory.

2. Add Os_TimingHooks_isystem.c to one of the makefiles:
APP_SOURCE_LST += GenData\Os_TimingHooks isystem.c

3. Start a shell in the build directory and execute .\m.bat.

You have finished instrumenting the application. Add the Profiler XML file to winIDEA and configure a
data-trace for the global trace variable isystem trace. You can now start to profile your application.
The result is a Vector MICROSAR Thread state recording, as depicted in Figure 5.

11 of 22 Application Note
www.isystem.com

https://www.youtube.com/watch?v=qR_yEUJNPR4&t=429s

Vector MICROSAR Profiling

Profiler Timeline

P I EICE EEEE Tota ToF
67rms |220us 67rns |230us 67rns ‘2401.45 67rns |250u5 67rms ‘2601.45
........ T e P TP P E A
Data Value History -~
&~ Il Default_BSW_Async_Task_Core_1 |
#- I Default_BSW_async_Task_Core_2
= I Default_BSH_Async_Task_Core_3 |
=~ I Default_BSH_fisync_Task_Core_d s]
T TERMINATED_TASK | |
B hew -
Bl RUNNTHG]
I Default _BSH_Sync_Task
I Default_Background_Task [|]

I IdleTask_OsCore_Corel
I IdleTask_OsCore_Core2
Il IdleTask_OsCore_Core3
I IdleTask_OsCore_Cored

[e ez e R

I OsHighPrioEthTask | | | |]
T HATTING_EWENT] [
I READY I S
I hEM
I RUNNING [| [| []
+- I OsLowPrioMemTask
=~ CounterIsr_Core@] I
I TERMINATED_ISR] || m
I8 RUNNING [[W]
#- I CounterIsr_Corel |]
+- I CounterIsr_Core2
#- I CounterIsr_Core3 |]
- CounterTsr_Cored I
-0 Lin_Chanmel_1_EX_Extended_Error_Int v
Used 1.1G / Free 144,46 -159.64 us (6.26kHz) BE7.34 ms B67.34 ms[67.34 ms M0.00 ns {(NA)

Figure 5: MICROSAR OS Thread State profiling recorded by instrumenting the Vector Timing-Hooks. Notice the
initial pending time (NEW) and the different inactive states: READY, WAITING and TERMINATED.

3.5 Task State/Running ISR via Instrumentation Trace

Instead of instrumenting the Vector OS Timing-Hooks with writes to a global variable, we can also
utilize instrumentation trace. For a visual guide to this use-case, watch this webinar. Follow the
previous section Task State/Running ISR via Instrumented Data Trace and come back to this section
before you compile the application with the instrumentation file.

You first have to update the instrumentation to use software trace messages. Open
Os_TimingHooks isystem.h and scroll to the bottom. You will find a commented out section that
includes implementations for the timing-hooks and an assembly function isystem profile thread.
Remove the comments to enable this part of the instrumentation file and remove the other hook
implementations in the upper part (the once writing into isystem trace). You can now copy the header
file into your cenpata directory and rebuild the application. You do not have to include the C file
because this use-case does not use the global instrumentation variable.

Next, you have to update the Profiler XML to let the profiler know that the instrumentation uses RH850
software trace instead of the instrumentation variable. Search for the Threads pefinition object. Then
remove the red line with the trace variable and add a new line with the DBPUSH string, as shown in
the following listing. Be aware, that iTCHi will override the Profiler XML file if you re-execute it. To
avoid this, you can copy the whole object and append SFT to the Name and Definition texts, as
indicated by the blue color.

<Object>
<Definition>Threads Definition SFT</Definition>
<Name>Threads Name SFT</Name>
<!—Lines removed to save space. -->
<Expression>isystem trace</Expression>

<!—Lines removed to save space. —-—>
</Object>

You can now load the update Profiler XML file into winIDEA and start profiling. Usually, winIDEA can
configure software trace automatically, but if you do not see any data, you can follow the Renesas
RHB850 Software Trace section.

12 of 22 Application Note
www.isystem.com

https://youtu.be/qR_yEUJNPR4?t=1591

Vector MICROSAR Profiling

3.6 Runnables via Program Flow Trace

Runnables are functions defined within the RTE. The operating system does not actively manage the
execution of Runnables directly but runs Tasks, which then execute the Runnables. There are no
variables that indicate the current state of a Runnable. Tracing Runnables via data-trace is therefore
not feasible. However, you can profile Runnables without instrumentation via program-flow-trace. For
a video guide of this use-case, watch this webinar.

It is possible to record a program-flow-trace and analyze the Runnables within the code-area of the
profiler. Explicitly, marking the functions of Runnables has to advantages: the profiler shows the
Runnables under a dedicated node in the data section, as shown in Figure 6, and you can export the
Runnables into a BTF trace.

To profile Runnables, you have to add them to the iTCHi configuration file into a dedicated section, as
shown in Listing 8. Next, execute ./itchi-bin.exe --runnable program flow. After generating the
Profiler XML load, it into winIDEA, configure program-flow-trace for your target and make sure to
select Runnables under the profiler OS setup. You can start profiling and should get a result similar to
the recording depicted in Figure 6.

{
"orti file": "Os Trace.ORT",
"profiler xml file": "Profiler.xml",
"runnable program flow": {
"runnables": [
"Runnable Corel 100ms",
"Runnable Corel 1lms"
]
}
}

Listing 8: iTCHi configuration for profiling Runnables with program-flow-trace.

- A1l Cores: Runnables (Program Flow)

+-f% Runnable_Corel_lms NEERRRRRRRRAR!
+ f& Runnable Corel 28ms_8 | B

+- & Runnable Corel 28ms_1 111

+- & Runnable Corel 20ms_2 Bl
+ f& Runnable Corel 28ms 3 B

Figure 6: Runnable profiling based on program-flow-trace. The profiler displays Runnables in the data area. Make
sure to unselect "hide areas with no activity."

13 of 22 Application Note
www.isystem.com

https://youtu.be/iSTpiDJK0VU?t=3200

Vector MICROSAR Profiling

3.7 Runnables via Instrumented Data Trace

Tracing of Runnables can be accomplished via program flow trace or utilizing instrumentation. This
section describes how to profile Runnables by instrumenting the Virtual Function Bus (VFB) trace
hooks. VFB tracing allows tracing the execution of various AUTOSAR RTE objects. The user can decide
which events (e.g., Runnable start/return or Data send/receive) to observe. For more information,
refer to the RTE technical reference manual. For a video guide of this use-case, watch our webinar.
Start by enabling the VFB Runnable hooks for the Runnable you want to profile, as explained in Enable
VFB Trace Hooks. After you have regenerated the RTE, iTCHi can automatically implement the
instrumentation for the hooks. Adapt the configuration in the following listing.

{
"orti file": "Os Trace.ORT",
"profiler xml file": "Profiler.xml",
"runnable instrumentation": ({
"isystem vfb hooks c": "Rte VfbHooks isystem.c",
"rte hook h": "Appl/GenData/Rte Hook.h",
"regex": " (FUNC\\ (void, RTE_APPL CODE\\)
Rte Runnable (\\w+) (Start|Return)\\ ([*\\n]+\\))",
"trace variable": "isystem trace runnable",
"template file": "VfbHooks template.c"
}
}

Listing 9: iTCHi configuration for profiling Runanbles with instrumented data-trace.

There are a couple of attributes for the Runnable instrumentation use-case. You can leave the
attributes regex, template file, and trace variable aS$ they are. Use isystem vfb hooks c tO specﬁy
the file into which iTCHi generates the instrumentation and rte hook hto pointiTCHito the rte Hook.h
file generated by the DaVinci Configurator.

You are now ready to run itchi-bin.exe --runnable instrumentation. Open the newly generated
instrumentation file and verify that the Runnable hooks are there. You will notice that the generated
code relies on some microcontroller and compiler-specific features. The default instrumentation uses
the mfcr (move from core register) instruction to get the core identifier. Also, we allocate the iSYSTEM
Runnable variable into global LMU RAM by using the at directive. This hook implementation works for
Infineon AURIX microcontrollers.

For other architectures, open the hook template file (VfbHooks template.c) and remove the two red
sections, as shown in the following listing. Delete the memory allocation from the definition of the
trace variable and remove the core identifier instruction from the hook implementation template. If
you are using a multi-core microcontroller, you must replace the code with another command to get
the core identifier depending on the architecture you are using.

// listing does not show the full template.
volatile uint32 {{trace variable}} at (0xB0040200) = 0;

{$ for hook in runnable hooks %}
{{hook.declaration}}

{
{{trace variable}} = {{hook.id}} | (mfcr(CPU CORE ID) << 24);

}

% endfor %}
Listing 10: The default Runnable hook template contains two Infineon AURIX specific sections. Remove the red
parts if you are using a different architecture.

You can now regenerate the hook implementation with the command from above. Next, add the hook
implementation file (not the template) to your MICROSAR build process and rebuild the application.
Add the Profiler XML to winIDEA, select Runnables under OS setup, and record your first Runnable
profiling. The result should look as shown in Figure 7.

14 of 22 Application Note
www.isystem.com

https://youtu.be/qR_yEUJNPR4?t=1997

Vector MICROSAR Profiling

Profiler Timeling

£ SWC_ Core2 SWC Core2 Rurnnable 26ms ||
£ SWC_ Core2 SWC_Core2 Runnable Sms | |

G-PRE| P& o A TR AR R Total 999,644 ms
llms . 41C!m5 . 42C!m
Code [Neutral] / Histary
P/ <WiC_Corel SWC Corel Runnable_1&&ms []
& SWC_Corel SWC_Corel Runnable_26éms -
£ SWC_ Corel SWC_Corel Runnable Sms | | |
£ SWC_Core?_SWC_Core2_Runnable_18&&ms []
|

Figure 7: MICROSAR OS Runnable Profiling via VFB Tracing Hooks instrumentation.

3.8 Runnables via Instrumentation Trace

Instead of instrumenting the RTE VFB trace hooks with writes to a global variable, we can also utilize
instrumentation trace. Follow the previous section 3.7 and come back to this section before you
compile the application with the instrumentation file. You have to make two changes before you can
Profile the Runnables via software trace. First, update the hook template file with the software trace
instrumentation, regenerate the hook file, and compile the application. Second, update the Profiler
XML file to use software trace signaling instead of the global trace variable.

For the first step, open the hook template file (VfbHooks_template.c) and make the changes as shown
in the following listing. We remove the trace variable because it is not necessary for software trace.
Then, we add an assembly function that uses a DBTAG instruction to send a trace message for a
constant value. Finally, we use the assembly function in the hook implementation to signal the
Runnable hook identifier. You can now recompile the application with the updated file.

// listing does not show the full template.

volatile uint32 {{trace variable}} at (0xB0040200) = O;
ifndef CPU CORE_ID

define CPU CORE ID OxFEILC

endif

if (RTE _VFB TRACE == 1)

define RTE START SEC APPL_ CODE

include "MemMap.h" /* PRQA S 5087 */ /* MD MSR 19.1 */

% for hook in runnable hooks %}
{{hook.declaration}}

{
{{trace variable}} = {{hook.id}} | (mfcr(CPU CORE ID) << 24);

}

% endfor %}
endif
Now update the Profiler XML file by searching for the Runnable object. Replace the expression for the

trace variable with signaling via DBTAG. Reload the Profiler XML into winIDEA, select Runnables under
OS setup, and start profiling. The result should look as shown in Figure 7.

<Expression>isystem trace runnable</Expression>

15 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

4 Generic Profiler/Trace Configuration

This chapter shows how to configure OS/RTE awareness using the iSYSTEM Profiler XML file. We also
cover trace configurations for standard architectures.

4.1 Configure OS/RTE Profiling

This section explains how to add the iSYSTEM Profiler XML generated by iTCHi to winIDEA, and then
how to make the winIDEA Analyzer aware of the OS/RTE via the Profiler configuration menu.

1. Add the XML file to winIDEA.
a. Go to Debug, Operating Systems:
¢# Operating System...

Debug
b. Create a new OSEK AUTOSAR operating system and call it MICROSAR:
Marne >
DSEK AUTOSAR
[MICROSAR|

Cancel

c. Select iSYSTEM XML as file description type and reference your profiler.xmi file:

Property Value

=1 Configuration
RTOS description file type iSYSTEM XML
RTOS description file location profiler xml

d. Close the menu and Load Symbols or Download to apply the changes: s
2. Enable OS/RTE Profiling in the winIDEA Analyzer.

a. Go to View, Analyzer, to start the winIDEA Analyzer.

b. Create a new Analyzer configuration:

| Create Mew Configuration...

c. Inthe menu, select profiler, unselect Coverage and choose Automatic.
d. Open the new configuration via the hammer-icon: #*
e. Make sure profiler is active in the hardware tab: EAProfier
f. Switch into the profiler tab, unselect all options except OS objects: bl 05 objects
g. Click on OS Setup, select the operating system and the objects you want to profile:
1 RTOS Profiler Options x
Hardware Profiler Coverage BpsatngEieten
Profle MICROSAR ~
[code Objects to profile
Advanced... __
[pata []Core 0: Tasks -
[*]Core 1: Tasks
2105 objects 05 Setup... [Core 2: Tasks
b|Core 0: ISRs2
Dnetwork Core 1:15Rs2
éCore 2: ISRs2
[]core0: SERVICETRACE(D) v

3. You are now ready to start profiling by clicking the green play button in the Analyzer. If you
have multiple objects, winIDEA might give an error saying there are too many data areas.
When you get this error, you have to configure the hardware trace manually under the

Hardware-tab. You can find out how to do that for different architectures in the following
sections.

16 of 22 Application Note

www.isystem.com

Vector MICROSAR Profiling

4.2

Infineon TriCore Data Trace

These sections explain how to configure data-trace for the Infineon TriCore architecture. The basic
configuration for all trace use-cases is the same, so make sure to follow the steps in the Basic
Configuration section.

4.2.1

Basic Configuration

This section gives you a starting point for more complex TriCore configurations. To create a start
configuration, execute the following steps.

4.2.2

Create a new winlIDEA analyzer configuration.

| Create Mew Configuration...

Specify a name, select the Profiler checkbox, and choose Manual Trigger Configuration.
Confirm with OK.

(®) Manual
In the record-tab, make sure to disable Timer Interpolation.

Timer Interpalation O

Change to the MCDS Tab and set the Trigger Position to Begin.
MZDS Trigger Posikion Eeqgin o
Change the Timestamps source to tick.

fssume source ko be |} P

Change to the MCX tab.
MIZR

Set trace_done to Never.

krace_done -

Set tick_enable to Always.

tick_enable ALWAYS

Click OK to make the configuration permanent.

Ik

Data Trace Single Variables

This section assumes you have a basic TriCore configuration. Based on that, this section shows how to
add data-trace triggers for certain variables.

17 of 22

Open your analyzer configuration and select Configure.
Configure, ..

In the MCDS tab, configure POB X so that it observes CPUO (assuming that core accesses this
variable).

Which processor core is seen by POB X [CPUD e
Switch to the TriCore X tab.

TriCare =
Configuring trace for a specific variable or memory area is a three-step process. First, select

the variable with the dtu_ea trig * data trigger. Double-click the DTU (data-trace unit) trigger
with the index 0.

dtu_ga_trig_0 ALYWAYS
Configure the trigger to use work as a range comparator.
% <= A0DR ==% w

Application Note
www.isystem.com

Vector MICROSAR Profiling

10.

Select the variable you want to trace and tick the checkbox for the Entire Object. This setting
ensures recording of the complete variable, independent of it being a primary type or a
complex data type like an array or a struct.

A |i5':.:'stem_tra|:e |

Next, you must find an Event that maps to the trigger, enable it, and select the respective
trigger from the list.

[] #1dru_ea trig 0 |[i5';.fstem_tra|:e]

When you close the event configuration dialog, the respective event should look like this:
ENTIO dtu_ea_krig_0

Finally, activate dtu wdat and dtu wadr for the event you have selected. To do so, set the
respective Qualifier on Active, the Level on State, and the event you have chosen in the
previous step.

IF | Ackive b Skate e EWTIO e
Make sure to do this for the data and the address action.
deu_wdat EVTI1O

deu_wadr EWT10

This step finishes the configuration for a variable that is accessed from CPUO. If multiple cores access
a variable, do the same settings in the SR tab.

Pw

Open your analyzer configuration and select Configure.

Configure, ..
In the MCDS tab, select that the LMU is seen by SRI 1.
Which SRI slave is seen bw SRI1 LI (LM SRAM, EMEM) e
Switch to the SRl tab.
SRI

Follow the configuration steps starting from step 4 from above but use one of the
dtul _ea trig_ = triggers.

Figure 9 shows a screenshot of a data-trace configuration for accesses to a variable from multiple
cores. In total, it is possible to trace up to four variables or memory ranges per observation block. Each
trigger maps to a different event, which must then assign to the data and address trace actions, as
shown in Figure 8.

Action >

Qualifier Level Event
IF | Active ~ |State ~ E¥TOD v
CR | Ackive Skate w EWT1 e

Cancel
OF | MNEWER w Edge ENTO
QR | MEWER. w Edage EYTO
Figure 8: One processor or bus observation block can observe up to four different events.

18 of 22

Application Note
www.isystem.com

Vector MICROSAR Profiling

Trigger - [Advanced Coverage Trigger] *
MCDS TriCore ® TriCore ¥ SRI SPE MK iNET
action (double click to edit) Event {double click to edit) Trigger {double click ta edit)
EYT0 dtul ea trig 0 dtul_ea_fine
deu_sync - E¥TL dtul_ea_trig_1 dtuZ_ea_fine
drul _wedat ENWTO | E¥TL E¥TZ - drul_ea_trig_0 [isystem_trace]
drul _wadr ENTO | E¥TL E¥T3 - drul_ea_trig_1 (0sCfg_Trace_OsCore_Corel_Dyn).CurrentTs
drul_rdat - E¥T4 - drul_ea_trig_2 ALWAYS
drul_radr - E¥TS - dtul_ea_trig_3 ALWAYS
dbuz_wdat - E¥TE - diul_dab_trig 0 ALWAYS
druz_wadr - EVT7 - drul_dat_trig_1 ALWAYS
druz_rdat - EVTE - diul_dat_trig_z ALWAYS
dtuZ_radr - EvT2 - dul_dak_trig_3 ALWAYS
whu_enable_0 - E¥TIO - drul_acc_trig_0 Arcess
wku_enable_1 - EWT11 - deul_acc_trig_1 ACCess
whu_enable_2 - E¥T1Z - drul_acc_trig_2 Arcess
wku_enable_3 - EWT13 - drul_acc_trig_3 ACCess
whu_enable_4 - E¥T14 - dtuZ_ea_trig_0 ALWAYS
wku_enable_S - EWT1S - druz_ea_trig_1 ALWAYS
whu_enable_g& - dtuZ_ea_trig_2 ALWAYS
whu_enable_7 - diuZ_ea_trig_3 ALWAYS
sti_ack_0 - druZ_dat_trig_0 ALWAYS
sri_ack_1 - dtuz_dak_krig_1 ALWAYS
sti_ack_2 - druZ_dat_trig_2 ALWAYS
sri_ack_3 - dtuz_dat_trig_3 ALWAYS
sti_ack_4 - dtuZ_acc_trig_0 Access
sti_ack_5 - dtu2_acc_trig_1 ACCess
sti_ack_g - dtuZ_acc_trig_2 Access
sti_ack_7 - dtu2_acc_trig_3 ACCess
tsu_rel - deu_ei
deu_sus
deu_err
sri_trig_0
sHi_krig_1
sti_trig_2
DCU_SRI status trace enable _
Ve Wizard... “1 Create Template... Cancel Help

Figure 9: Data trace configuration for memory accesses to the isystem_trace variable and a memory range from
multiple Infineon TriCore cores.

4.2.3 Data Trace Address Range

Recording a data-trace for an address range works similarly to the configuration for a single variable.
The difference is that you specify two variables or addresses instead of a single variable. Execute the
steps from the previous section, except 5 and 6, and configure the trigger, as shown in Figure 10.
When specifying the range via symbols, the first variable, all variables in between, and the last variable
are part of the memory range. The only exception is when the Y variable has a complex data type. In
that case, it is necessary to expand the complex variable and select the last element. Otherwise, the
chip may not record access to the Y variable.

Instead of specifying symbols, it is also possible to enter addresses directly into the X and Y fields.
Specify the raw addresses in hexadecimal form. For example, 0x0 and oxbeer1337 are valid addresses.
The Y value must be higher than the X value.

Trigger >
X == a0bDR ==Y e 0K

® |MK_|:EI_aux1Threau:| | Cancel
] Entire Shject

¥ | MK_co_idieThread]

Figure 10: By specifying two objects or addresses, a range-comparator can span larger memory areas.

19 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

4.3 Renesas RH850 Software Trace

Renesas Software trace is an RH850 specific instrumentation based trace technique. It uses dedicated
assembly instruction called pscp, peTAG, and pBPUSH tO create trace messages at points of interest. The
user can decide where and with which arguments to call the respective instructions. The first
instruction pece creates a trace message with the current value of the instruction pointer. The perac
message creates a message with a constant value (known at compile time), while peruss creates signals
based on the content of variables (that change during runtime). This section assumes that the
application already contains software trace assembly instructions. If this is not the case, refer to section
3.5 for Task State/ISR Profiling and section 3.7 for Runnable Profiling with instrumentation.

To record software trace messages open winIlDEA and the winIDEA Profiler and do the following

configuration steps.

1. Create a new configuration by clicking the drop-down arrow next to the hammer symbol and
select: Create New Configuration.

P A

| Create Mew Configuration...

2. Specify a name, select the Profiler checkbox, and choose Manual Trigger Configuration.
Confirm with OK.

(®) Manual

3. Switch to the PE1.

PE1

4. The default configuration already contains most of the necessary settings. The only change
required is to disable this setting: Record Program trace.
[]record Program

5. Close the hardware configuration by clicking the OK button.

Ik

The resulting configuration should look as depicted in Figure 11. The winIDEA profiler now records
Renesas software trace messages. The profiler interprets the software trace messages based on the
information in the Profiler XML file.

| Recorder SoC PEL MET
[#Enabled

Execution

1 ON Any

2 Addr ==
3 Addr ==
4 Addr ==
5 Addr ==
6 addr ==
7 Addr ==
g addr ==

[JsEquencer
Trigger on W

Counter Disabled

[Jrecord Program Record SofTrace

[Jskall CPU ta prevent averflows

Entire Object

Entire Ohject

Ertire Object

Entire Object

[ereak cru

[record Stack

Record internal timestamp

ré Wizard... %1 Create Template...

Figure 11: Hardware configuration to record Renesas software trace messages in winIDEA.

20 of 22

Data

RD
RD
RD
RD
RD
RD
RD

RD

www.isystem.com

Addr ==

Addr ==

Addr ==

Addr ==

Addr ==

Addr ==

Addr ==

Addr ==

QK

Entire Object

Entire Object

Entire Object

Entire Object

Cancel

Help

Application Note

Vector MICROSAR Profiling

4.4 BTF Export

The winlIDEA Profiler supports the export of traces into the BTF format. BTF is a CSV based trace format
that is supported by different timing tool vendors. By using iTCHi, the configuration for BTF export is
part of the Profiler XML automatically. Each Task and ISR object should reference a BTF mapping, as
shown in the following listing. Note that BTF export only makes sense for task state profiling.

<BTFMappingType>TypeEnum BTFMapping</BTFMappingType>

The mapping maps a state to a BTF transition, as shown in Listing 11. The Name-tag is the state as
displayed in the winIDEA Profiler timeline, and the Value-tag is the respective BTF transition for a
change to that state. To export a BTF file, follow these steps:

1. Load symbols | to make sure that the latest iSYSTEM Profiler XML is in use.

2. Record a trace with the necessary configuration to record threads and Runnables.
3. Select the export button in the Profiler timeline, choose BTF export, and export.
Profiler Timeline
{@.v?v‘ﬁ|| Format | BTF v

4. The resultis a BTF trace, as shown in Figure 12.

<TypeEnum>
<Name>TypeEnum BTFMapping</Name>
<Enum><Name>NEW</Name><Value>Active</Value></Enum>
<Enum><Name>READY</Name><Value>Ready</Value></Enum>
<Enum><Name>READY SYNC</Name><Value>Ready</Value></Enum>
<Enum><Name>RUNNING</Name><Value>Running</Value></Enum>
<Enum><Name>WAITING EVENT</Name><Value>Waiting</Value></Enum>
<Enum><Name>WAITING SEM</Name><Value>Waiting</Value></Enum>
<Enum><Name>READ ASYNC</Name><Value>Waiting</Value></Enum>
<Enum><Name>WAITING</Name><Value>Waiting</Value></Enum>
<Enum><Name>TERMINATED TASK</Name><Value>Terminated</Value></Enum>
<Enum><Name>TERMINATED ISR</Name><Value>Terminated</Value></Enum>
<Enum><Name>INVALID</Name><Value>Terminated</Value></Enum>
<Enum><Name>QUARANTINED</Name><Value>Terminated</Value></Enum>
<Enum><Name>SUSPENDED</Name><Value>Terminated</Value></Enum>

</TypeEnum>

Listing 11: Mapping from thread states to BTF state transitions. This mapping is required for the winIDEA
Profiler to execute a correct BTF export.

265 T621643,CORE 0,22, T,CounterIsr Corel,zZ2,start ~
Zo6 71622770, 83T User Task Core 1 100ms,0,T,User Task Core 1 100ms,D,activate
2a7 7624610,CORE_l,2,T,CounterIsr_Corel,2,terminate

268 TeZ24a70,CCORE 1,0,T,User Task Core 1 5Sms,0,.start

209 Thz25823,User Task Core 1 Sms,0,R,3WC_Corel SWC Corel Runnable 5ms, 0, =star
270 7T6Z7370,CORE 0,22, T,CounterIsr Corel,ZZ, terminate

271 TET?TAPT SADET NN M Nefanlt Thit Macl (1 racome v
< >
length: 136,080 liln:267 Col:1 Sel:0|0 Windows (CRLFy UTF-8 INS
Profiler Timeline
G~ L/ B4 ol & #dFHRARAR A Total 99.652 ms
7ms 620us Trms 630us Tms &4
Data Histary ~
+ HEUser"_Task_Cor"e_l_Smsé
+- I User_Task_Core_2 5ms [|
+- CounterIsr Cored _
+-H Counterlsr_Corel]

Figure 12: The winIDEA Profiler can export to the BTF format. Multiple timing tool vendors support BTF.

21 of 22 Application Note
www.isystem.com

Vector MICROSAR Profiling

5 Technical Support

5.1 Online Resources

Online Help #

winIDEA and testIDEA
online help

Technical Notes ¥

How-tos for winIDEA
functionalities with scripts

5.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

Knowledge Base #

Tips & tricks categorized by
issue type and architecture

Application Notes

How-to notes on advanced
use-cases

Tutorials ¥

From beginner to expert

Webinars ¥

Technical webinars about
ISYSTEM tools with use cases

iSYSTEM makes every effort to ensure the accuracy and reliability of the information provided in this
document at the time of publishing. While iSYSTEM reserves the right to make changes to its products
and the specifications detailed herein, it does not make any representations or commitments to

update this document.

© iSYSTEM. All rights reserved.

22 of 22

www.isystem.com

Application Note

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

