iSYSTEM Elektrobit EB tresos AutoCore;
Profiling Application Note he T

This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.

Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.

All trademarks are property of their respective owners.

iSYSTEM is an I1SO 9001 certified company

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

Table of Contents

1 Tal oo [¥] o1 o] o WS PRT
1.1 Trace ODBJECLS voviiiuiiie et e e et e e e
1.2 Trace TEChNIQUES ...eeieiiieee e e e

2 Running Task/ISR2 Profiling.......cccueeeiieeciieeieeciee et
2.1 (O] o TN =Y o o [P RRRN
2.2 0OS Running Task/ISR2 Information.........cccceeveeveeviesieeie e
2.3 winIDEA Profiler Configurationccccccueveeiiieeiiiiiiee e,
2.4 WiInIDEA Profiler Visualization........ccceeeeiieieciiiiiiieeeeeeecceeee e

3 OS Tasks State Trace without Instrumentation........cccccevecieeeiicieeeeiiieeen,
3.1 (@ Y 0] o i T={V] =Y o o ISP
3.2 OS Task State INformationcccvveeeeei e
3.3 OS ISR2 State INformation........ccccuvvieeee e
3.4 winlIDEA Profiler Configurationcccccueeeeiiiiieiiiiiee e,
3.5 winIDEA Profiler Visualization.........ccccovveieeiiieee e,

4 0OS Task/ISR2 State Trace with Instrumentation.......ccccveveeeiieeeeciieeeeeeeenne
41 (O R e gV i T={V] =Y o] o U SRROTPN
4.2 OS Task State INformationcceeeeciee e
4.3 OS ISR2 State INformation........cceeeeeciieeieciee e
4.4 winlIDEA Profiler Configurationcccceeeeeiiieieciiee e,
4.5 winIDEA Profiler Visualization........ccccccoveeeeeiieeeeeieee e,

5 Processor-specific Trace Configurations..........ccccccveeeiciieeecciiec e,
5.1 INFINEON AURIX MICDS ...oooeiee ettt e
5.2 Renesas RH850 Software TracCecccccueeeeeevieeeecieee et

6 2 N = 0T o N

7 [=Tt (0] PP PPPPPPPPPPPINt
7.1 Task Metric ANAlYSiS....ccviiiiiiiieeieciee et e

I 1 =Tol o[ot | YU o] oo A0SR
8.1 ONIINE RESOUICES ...eevivieeciiiieeeite e ettt e e et e e e stae e e s rae e e saaae e e s aaeeeens
8.2 CONtaCT . e

10f35

www.isystem.com

Application Note

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

1 Introduction

This document describes how to use the winIDEA Analyzer for the timing analysis of the Elektrobit EB
tresos AutoCore operating system. Timing analysis records and examines the runtime behavior of
operating system objects such as tasks and ISRs.

Recording and profiling the data required for timing analysis follows a common pattern independent
from the hardware, operating system, and the number or type of objects of interest. Firstly, the objects
of interest must be defined. An overview of possible objects is given in the Section Trace Objects.
Analyzing the CPU utilization requires recording task and ISR states, whereas analyzing complex event
chains may also require recording Runnable events and sender-receiver interfaces. With the list of
desired objects, the OS can be configured so that those objects become available to the trace tool. For
some objects, like tasks, no configuration may be required. This step is called Operating System
Configuration.

Next, a hardware trace is recorded. A hardware trace utilizes dedicated microcontroller features that
allow data, made available via the OS Configuration, to be recorded and sent off the chip via a
dedicated trace interface. The various OS trace concepts are described independent of the underlying
processor hardware. Section 5 ”Processor-specific Trace Configurations” provides some insights in
special trace features of some processor families.

Now, a hardware trace is recorded in winIDEA. A hardware trace contains low level objects that are
not directly useful for the timing analysis. It is the job of the winIDEA profiler to analyze this data and
transform it into a user-friendly format. This step is called profiling. For the profiling step winIDEA must
be aware of the underlying OS information encoded in the hardware trace. This information is either
provided in the form of an AUTOSAR ORTI file or/and an iSYSTEM proprietary winIDEA Profiler XML
file. This step is called Profiler Configuration.

1.1 Trace Objects

Depending on the kind of analysis different operating system objects and RTE objects are of interest.
This section gives an overview of those objects.

111 Tasks/ISR2s Running

The most basic type of objects that are usually of interest for the timing analysis are Tasks and ISR2s.
Tasks are operating system containers for Runnables. ISR2s are interrupt triggered service routines
that are used by the operating system, or can also be used as a container for Runnables. A trace that
only contains the information about the currently running Task or ISR is called a Tasks/ISRs Running
Trace. Please note that throughout this documents, both notations “ISR” and “ISR2” are identical and
both refer to AUTOSAR ISR Category 2 Interrupt Service Routines.

1.1.2 Tasks/ISRs State

A Tasks/ISRs Running trace is not always sufficient for timing analysis. For example, while the
information is sufficient to calculate the CPU utilization of a system it is not sufficient to calculate the
response time of a given task.

The response time of a task is defined from activation to termination which may include periods during
which the task is preempted. With a running task trace the information about activations and
preemptions is not available. In this case, a Tasks/ISRs State trace is required. This type of trace records
the detailed state of each task and ISR. This means the profiler knows when a task switches from the
suspended state into the new state which indicates an activation. Also, the profiler knows when a task
switches from running to preempted which indicates a preemption.

2 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

1.1.3 Runnables

In AUTOSAR Runnables are special functions defined in the RTE. They are mapped to tasks and
executed in the context of those tasks. Runnables are triggered by RTE events such as periodic events
and data-received-events. Tracing Runnables becomes important when a more detailed view in the
application is required. In theory Runnable tracing can be done independently from Task/ISR tracing.
However, whenever not only the currently running Runnable is of interest, but also the information
about preemptions and resumes, it is mandatory to record a Task/ISR state trace in conjunction with
the Runnable trace. By recording the task and ISR state information the profiler can reconstruct the
Runnable preempt and resume events.

1.1.4 RTE Interfaces

In AUTOSAR Runnables are also mapped to software components. Communication between different
software components happens via dedicated communication interfaces such as sender/receiver and
client/server communication interfaces. For certain use-cases it may be of interest to record those
interfaces. For example, a certain signal may have a data age constraint, i.e. a maximum time between
the signal being produced by one Runnable and the signal being consumed by another Runnable. By
tracing the RTE interfaces which are used to propagate this specific signal through the application the
data age constraint can be validated.

1.2 Trace Techniques

In general, there are three trace measurement techniques: software, hybrid, and hardware based
tracing. All techniques are meant to examine the runtime behavior of a system. In this section we focus
on hardware based trace techniques. Hardware based tracing relies on a dedicated on-chip trace logic
which is used to capture events of interest and send it off the chip. Depending on the chip none or
more of the following techniques are available. The available trace techniques have a direct influence
on which kind of Trace Objects can be recorded or not.

1.2.1 Program Flow Trace

A program flow trace (also called instruction trace) records the instructions that are executed by the
CPU. This means a program flow trace shows the complete execution path of an application for the
duration of the trace recording. Program flow tracing can be used for debugging, but also for profiling
certain trace objects. The most common use-case is to create a Runnable trace based on the function
entry and exit information that are part of an instruction trace.

1.2.2 Data Trace

Data tracing records read and write accesses to memory. This allows for monitoring the contents of
global variables for the duration of the trace recording. Depending on the architecture comparators or
filters are used to define which variables or memory regions should be traced. An example use-case
for data tracing is monitoring the OS running task variable to generate a task trace.

1.2.3 Instrumented Data Trace

A normal data trace is not always sufficient to record a trace for all possible trace objects of interest.
For example, there is usually no variable that indicates which Runnable is currently executed. In such
cases instrumentation can be added to the application to write the desired information into a
dedicated variable. This variable can then be recorded by using a regular data trace.

3 0of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

2 Running Task/ISR2 Profiling

This section describes how to record a trace of the currently running OS Task and ISR2.

Recording a Tasks/ISR2s Running Trace is usually done by tracing data objects. Information about these
data objects imported into the trace tool via the AUTOSAR ORTI file. This file contains two attributes
RUNNTNGTASK and RUNNINGTISR2 Which can be utilized to record the required information via data tracing.

2.1 OS Configuration

To use the ORTI trace feature it needs to be activated in EB tresos Studio . After the respective setting
has been changed the OS must be regenerated and recompiled. The generated ORTI file can be found
in the directory “output\generated\orti\os.orti”.

2.2 OS Running Task/ISR2 Information

Based on the ORTI file the hardware must be configured in a way to record the variables which are
used by the OS to signal the running task and ISR2. The first step is to extract those variables from the
ORTI file. This can be done manually or with the help of winIDEA. If you want to use winIDEA, make
sure to do the next step Profiler Configuration first and then come back to this section.

To extract the variables of interest the ORTI file is searched for runnTNGTASK and rRunNINGTSR2. Note that
this attribute will appear multiple times. Firstly, in the declaration section of the ORTI file and then
again in the information section. For the hardware trace configuration the attribute in the information
section is of interest.

For a single core application, the entry in the information section should look as depicted in Listing 1.

0S XY

{
RUNNINGTASK = "OS_ taskCurrent";
RUNNINGISR2 = "OS_isrCurrent";

Listing 1: ORTI Attributes RUNNINGTASK and RUNNINGISR2 for a single core application.

From the listing the symbolic names of the variables for the runnInGTASK and rRuNNTNGISR2 trace can be
retrieved. Based on this information a data trace for single variables can now be configured for the
respective microcontroller architecture.

In case a multi-core application is used the entries in the information section look as depicted in Listing
2Error! Reference source not found.. There is a separate variable for runningTASK and runNINGTSR2 fOr
each core. Accordingly, the OS uses the respective variables to signal the currently running task and
ISR for each core individually.

/* 0S information for Core0 */
RUNNINGTASK[0] = "OS kernel ptr[0]->taskCurrent";
RUNNINGISR2[0] = "OS_kernel ptr[0]->isrCurrent";

/* 0S information for Corel */
RUNNINGTASK[1] = "OS_kernel ptr[l]->taskCurrent";
RUNNINGISR2[1] "OS_kernel ptr[l]->isrCurrent";

Listing 2: ORTI Attributes RUNNINGITASK and RUNNINGISR2 for a multi-core application.

The issue with the expression that is used to signal runnTNGTASK and rRUNNINGTSR? iS that it represents a
dereferenced pointer and the address it points to may change over time. Such an approach is perfectly
suitable for a static analysis, i.e. stopping the CPU, reading out the current address location the pointer
points to and display the contents in a dedicated OS status view. However, for trace during runtime
this is not a viable approach.

Alternatively, the EB tresos AutoCore OS provides other global data objects which can also be utilized
for runnINGTASK and RUNNINGISR2 tracing.

4 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

The runnineTASK and runnincIsr2 definitions of the ORTI file can be replaced (overwritten) by an
iSYSTEM proprietary Profiler Configuration XML file.

Listing 3 shows a sample iSYSTEM Profiler XML file. It imports the ORTI file generated by EB tresos
Studio and overwrites the RUNNINGTASK attributes of the ORTI file with the alternative global
variables (“Expression”) suitable for hardware data trace.

<?xml version='1.0' encoding='UTF-8' ?>
<OperatingSystem>
<Name>emcc_ AutoCore demo</Name>
<NumCores>2</NumCores>
<ORTI>os.orti</ORTI>

<Profiler>
<Object>

<Definition>RUNNINGTASK[0]</Definition>
<Description>TASKs.Core0O</Description>
<Expression>(0S kernelData core0).taskCurrent</Expression>
<Type>0S :RUNNINGTASK</Type>

<DefaultValue>NO TASK</DefaultValue>

<Core>0</Core>

</Object>
<Object>

<Definition>RUNNINGTASK[1]</Definition>
<Description>TASKs.Corel</Description>
<Expression>(0S kernelData corel) .taskCurrent</Expression>
<Type>0S :RUNNINGTASK</Type>

<DefaultValue>NO TASK</DefaultValue>

<Core>1</Core>

</Object>
<Object>

<Definition>RUNNINGISR2[0]</Definition>
<Description>ISR2s.Core0</Description>
<Expression>(0S_kernelData core0).isrCurrent</Expression>
<Type>0S : RUNNINGTASK</Type>

<DefaultValue>NO ISR</DefaultValue>

<Core>0</Core>

</Object>
<Object>

<Definition>RUNNINGISR2[1]</Definition>
<Description>ISR2s.Corel</Description>
<Expression>(0S_kernelData corel) .isrCurrent</Expression>
<Type>0S :RUNNINGTASK</Type>

<DefaultValue>NO ISR</DefaultValue>

<Core>1</Core>

</Object>

</Profiler>
</OperatingSystem>
Listing 3: winIDEA Profiler XML File for Multi-core OS Running Task and ISR2 Profiling on EB tresos AutoCore

If you have already done the Profiler Configuration for the respective ORTI/XML file you can extract
the variables from the RTOS Profiler Options in the winIDEA profiler as depicted in Figure 1. Each ORTI
attribute or XML object, which is traceable, is shown in this menu. For each entry there is an attribute
called Signaling which points to the respective variable that is used to signal that attribute. Comparing
the listing and the figure shows that the respective variables are the same.

50of 35

www.isystem.com

Application Note

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

RTOS Profiler Opticns

Operating System
EB AutoCore 0S5

Ohjects to profile
[~]coren.TASKs

ore L. TASKs
[«]Coren.ISR2s
[#]Core1.15R 25

Object Info:
MName:
Definiton:
Description:
Signaling:

RUMNIMGTASK]1]
RUMMIMGTASK]1]
Core 1. TASKs

(05_kernelData_core1). taskCurrent

Address Space

(® all
() Selected

Figure 1: The RTOS Profiler Options menu shows the profiler objects defined in the XML file.

Cancel

6 of 35

Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

2.3 winIDEA Profiler Configuration

Once the OS and the winIDEA Profiler XML is configured to provide the necessary information and the
hardware is configured to record those information, winIDEA must be made aware of this information.
This is done in two steps. First, the Profiler XML file is added to the workspace and then the winIDEA
profiler is configured to use this information. To add the XML file to the workspace execute the
following steps.

1. Open the Debug menu.
Debug

2. Open the OS Configuration Dialog.
¢# Operating System...

3. Create a new OS Configuration.

Mew, ..

4. Select OSEK AUTOSAR OS.
OSEK AUTOSAR [

5. Specify a name, for example, EB AutoCore OS.
Mame ot

DOSEK AUTOSAR
EE AutoCore 05|

6. Select XML as RTOS description file type.

Property Value

= Configuration
RTOS description file type iSYSTEM XML
RTOS description file location EBAutaCore(5 xml

7. Select the XML file and click OK.
()4

8. Make sure to load symbols to make the change active.

%

7 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

Next, the winIDEA profiler is configured to use the Profiler XML file, too. To do so execute the following
steps.

1. Open the profiler configuration. Make sure it is the same configuration for which data tracing
of the XML variables is configured.

&

&

2. Select the hardware tab and make sure that the profiler is activated.
Hardware Prafiler

3. Change to the profiler tab and make sure that OS objects are selected.
Profiler 05 objects

4. Click on OS Setup and select the OS for which you have added the XML file.
Operating System

03 Setup..., EB AutoCore OS5 t

5. Select all tasks and ISRs you want to profile. (Again, only those objects for which the signaling
variable is record will show up in the profiler timeline.)
Ohjects to profile

[+]Corel. TASKs
[«]Corel TASKs
[+]Coren. ISR 2s
[+]Corel.ISR.2s

7. Confirm with OK.
(] 4

8. Start a new trace recording.

>

8 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

2.4 winlIDEA Profiler Visualization

24.1 Profiler Timeline

If the application is running you should see the OS objects in the profiler timeline as shown in Figure
. If nothing is shown check the trace window u_d if accesses to the signaling variable have been
recorded. Also make sure that the data section 2 ._J of the profiler timeline is selected to be visible.

Profiler Timeline X
S-YRE/ @4 oA[MFKAAAR Total 1,000

463ms 464ms 465ms 466ms 467ms
T S S S S S S— S S S N S S E— T —
Data History

x | *ms* *send* Os_Count™ CAN*

=-1f't Cored. TASKS W I r—- il Il M
I SchMDiagStateTask 28ms
I SchMComTask_S588ms
Il SchMComTask_Sms [|
Il SchMComTask_1ms | | | |
I T_seens — I T S
B T_1@eMs
Il 7_saemMs
I T_SemMs
Bl T_2amMs

Wl T_lems e I |
Bl T_SMS_6é 0 r
Bl T_SMs_1 I
T 1Ms e [] [|
M T_lms_DataProviderl | | [| [| L}
Il T_Event_Send2Com 1
=-1f"1 Cored.ISR2s . = - i = - U
L CANSR@_ISR 1
Il CANSR4_TSR 1 1 1
Il Os_Counter_STHe_Te] [| 1 |
=1 Corel.TASKs o — [

Bl T_1eeeMs

B T_ins_1 | | || | | |

Bl T_1ms_DataProvider? 1 I 1
I T Sms_1_calculate B []
=-If] Corel.ISR2s .
Il Os_Counter_STH1_T8] | [| | |

Used 1.1G / Free 100.9G 3.82 ms (261.91Hz) 0463.28 msB464.43 ms[1465.43 ms M1999.36 us (1.00kHz)

Figure 2: Running Task/ISR2 Trace in the winIDEA Profiler Timeline.

Additional notes to the winIDEA Profiler Timeline in Figure 2:

- As the application comprises a large number of OS tasks, only the tasks and ISR2s of interest
have been filters by means of a string filer (‘**’ acts a wildcard). The filters view can be enabled
via the “Filter items” icon.

G-REE
Filter items

- The profiler objects can be re-ordered according to the user requirements by simply dragging-
and-dropping by means of the cursor.
This is applicable for both so-called parent and child objects. However, child objects can only
be moved within their parent group.

Parent group of parent object “Core0.ISR2s”:
S o] Coren. I5R2s| _] Parent Object
B CANSRB_ISR

D CANSRa_ISR Child Objects
B 0s_Counter_STM@_T@

- The profiler timeline offers three markers: black, blue and yellow.

9 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

The black marker is the “main” marker, which can be set to a simple left-mouse click within the
timeline.

The blue and the yellow and blue markers can be used to quickly measure the time between
two events of interest, such as the time between two instances of the same task.

The blue marker can be set by “Crtl + left mouse”, the yellow marker is set by “Crtl + right
mouse” click. The absolute location (in time) of the blue and yellow markers is shown in the
footer of the profiler timeline, as well as the time difference between the markers.

In Figure 2 the blue/yellow marker pair is used to measure the distance between two instances
of the task “T_1MS_0".

2.4.2 Profiler Statistics

The winIDEA Profiler also calculates statistics for the OS tasks and ISR2s. A sample Profiler Statistics

windows is shown in Figure 3.

e 4k Y

Data Count Met Time Met Average Time Period Average
=-1f'] Core@.TASKs
I8l NO_TASK_CORE_@ | 128 [82.8499650 ms 5.20%) 683.749 us @.@7%| 8.355993 ms 8.83%
Il SchMDiagStateTask_2ems | se| 4.776548 ms @.48%| 95.538 us @.21%| 20.000208 ms 2.90%
I T_1eems I 272 178.419868 ms 17.83%| £55.955 us 8.87%| 3.515531 ms 8.35%
B T_1eMs_e | 156 [l 57.419980 ms 5.74%| 382.799 us ©.04%| £.649771 ms B.66%
B T_1mMs_e] 10281 43.157788 ms 4.31%| 42.311 us ©.88%| 989.298 us @.10%
B T_20Ms | se 21.879970 ms 2.11%| 421.599 us ©.04%] 20.000622 ms 2.00%
B T_seems | 1230 78.513600 ms 7.85%| 638.321 us ©.06%| 5.853225 ms ©.58%

Figure 3: Sample Profiler Statistics for an OS Running Task Analysis

In the statistics in Figure 3 only the number of recorded task instances (Count), the total net execution
time of each task, the average net time and the average period are displayed.

Figure 4 lists all the statistics which can be calculated by the profiler for each profile object.

G- Y ¥ @4

Data |« Count

T 1% MetTime

+ Met Average Time
Met Min Time
Net Max Time
Gross Time
Gross Average Time
Gross Min Time
Gross Max Time
Call Time
Call Average Time
Call Min Time
Call Max Time

" Period Average
Pericd Min
Period Max
Inactive Time
Inactive Average Time
Inactive Min Time

Inactive Max Time

Figure 4: Complete list of calculated Profiler Statistics

10 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

3 OS Tasks State Trace without Instrumentation

This section explains how to record a Tasks/ISRs State Trace without the need for OS code
instrumentation. Whether this approach is applicable depends on the capabilities of the processor
hardware trace logic, i.e. the number of available data trace channels (address comparators) and the
bandwidth of the trace interface (such as parallel Nexus trace port, ARM TPIU or AURIX DAP interface).

3.1 OS Configuration

As this approach still requires an ORTI file, generation of an ORTI file needs to be activated in EB tresos
Studio. After the respective setting has been changed the OS must be regenerated and recompiled.
The generated ORTI file can be found in the directory output\generated\ortil\os.orti.

3.2 OS Task State Information

Task state tracing is based on the ORTI file task state attribute. To find the required symbols search the
ORTI section for Task objects and then for the sTtaTe attribute within tasks. This search should yield a
Task object definition as shown in Listing 1Listing 4.

TASK T 10MS 0
{
vs ID = "7";
STATE = "OS taskTableBase[7].dynamic->state";
CURRENTACTIVATIONS = "OS taskTableBase[7].dynamic->nAct";
vs MAXACTIVATIONS = "1";
STACK = "OS taskStack0 slotl9";
vs_ SHAREDSTACK = "false";
vs STACKSIZE = "136";
vs_ASSIGNEDPRIO = "34";
vs REALPRIORITY = "i2";
PRIORITY = "OS taskTableBase[7].dynamic->prio";
vs TYPE = "BASIC";
vs USE HW FP = "false";
vs MEASURE MAX RUNTIME = "false";
vs_ TIMING PROTECTION = "false";
i
Listing 4: Task object ORTI definition including STATE attribute

This task state attribute again uses a pointer to a structure element “state”, not really suitable for non-
intrusive hardware trace during runtime. There is again (same as e.g. for RUNNINGTASK) an alternative
global data object available in the AutoCore OS which can be utilized for hardware data trace. This
means, the STATE definition of the ORTI file also needs to be overwritten by an alternative definition
in an iSYSTEM Profiler XML file. Such a TASKSTATE definition is shown in Listing 3, for instance the
global variable os taskbynamic core0[1].state holds the current state of the OS task with index 1
running on core 0.

3.3 OS ISR2 State Information

There exists no state model for OSEK ISRs. Hence, the approach for tracing ISR2 still relies on the
RUNNINGISR2 attribute (as described in Chapter 2 “Running Task/ISR2 Profiling”).

11 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

3.4 winIDEA Profiler Configuration

The configuration of the profiler is a bit more complex for this use-case. Since the task state attribute
is implemented differently for different operating systems the profiler must be made aware of the task
state variables explicitly. A dedicated iSYSTEM Profiler XML file is used for that purpose. Listing 5 shows

an example for such a Profiler XML file.

<?xml version='1.0' encoding='UTF-8' ?>
<OperatingSystem>
<Name>EB AutoCore Demo</Name>
<NumCores>2</NumCores>

<ORTI>os.orti</ORTI>

<Types>
<TypeEnum>
<Name>Type TASKSTATE</Name>
<Enum><Name>SUSPENDED</Name> <Value>0</Value></Enum>
<Enum><Name>QUARANTINED</Name> <Value>1</Value></Enum>
<Enum><Name>NEW</Name> <Value>2</Value></Enum>
<Enum><Name>READY SYNC</Name> <Value>3</Value></Enum>
<Enum><Name>READY ASYNC</Name> <Value>4</Value></Enum>

<Enum><Name>RUNNING</Name> <Value>5</Value></Enum>
<Enum><Name>WAITING</Name> <Value>6</Value></Enum>
</TypeEnum>
<TypeEnum>

<Name>Type TaskState MAPPING</Name>
<Enum><Name>NO TASK</Name><Value>0xFF</Value></Enum>
<Enum><Name>TASK A</Name><Value>0</Value>
<Property><Name>Expression</Name>
<Value>0OS_ taskDynamic core0[0].state</Value></Property>
<Property><Name>Core</Name><Value>0</Value></Property>
</Enum>
<Enum><Name>TASK B</Name><Value>1</Value>
<Property><Name>Expression</Name>
<Value>0S taskDynamic coreO[l].state</Value></Property>
<Property><Name>Core</Name><Value>0</Value></Property>
</Enum>
<Enum><Name>TASK C</Name><Value>2</Value>
<Property><Name>Expression</Name>
<Value>0OS_ taskDynamic corel[0].state</Value></Property>
<Property><Name>Core</Name><Value>1</Value></Property>
</Enum>
</TypeEnum>

<TypeEnum>
<Name>Type ISRSTATE</Name>
<Enum><Name>SUSPENDED</Name> <Value>0x0</Value></Enum>

<Enum><Name>NEW< /Name> <Value>0x0</Value></Enum>
<Enum><Name>RUNNING</Name> <Value>0x0</Value></Enum>
</TypeEnum>
<TypeEnum>

<Name>Type ISR2 to BTF State Mapping</Name>

<Enum><Name>Suspended</Name> <Value>Terminated</Value></Enum>

<Enum><Name>Active</Name> <Value>Active</Value></Enum>

<Enum><Name>Running</Name> <Value>Running</Value></Enum>
</TypeEnum>

</Types>

<Profiler>
<Object>
<Definition>TASKSTATE</Definition>
<Description>Tasks</Description>
<Type>Type TaskState MAPPING</Type>
12 of 35
www.isystem.com

Application Note

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

<Expression>$ (EnumType)</Expression>
<DefaultValue>NO TASK</DefaultValue>
<Name>TASKSTATE</Name>
<Level>Task</Level>
<TaskState>
<MaskID>0x0</MaskID> <MaskState>0xFF</MaskState>
<MaskCore>0x0</MaskCore>
<Type>Type TASKSTATE</Type>

<StateInfo><Name>SUSPENDED</Name><Property>Terminate</Property></StateInfo>

<StateInfo><Name>WAITING</Name><Property>Terminate</Property></StateInfo>
<StateInfo><Name>RUNNING</Name> <Property>Run</Property></StateInfo>
</TaskState>
</Object>

<Object>
<Definition>ISRSTATEO</Definition>
<Description>ISR2s.Core0</Description>
<Type>0S:RUNNINGISR2</Type>
<Expression>(0OS kernelData core0).isrCurrent</Expression>
<DefaultValue>NO ISR</DefaultValue>
<Name>ISRSTATEO</Name>
<Level>IRQ1</Level>
<Core>0</Core>
<TaskState>
<MaskID>0xFFFFFFFF</MaskID>
<MaskState>0x0</MaskState>
<MaskCore>0x0</MaskCore>
<Type>Type >ISRSTATE</Type>
<BTFMappingType>Type ISR2 to BTF State Mapping</BTFMappingType>
<StateInfo><Name>SUSPENDED</Name><Property>Terminate</Property></StateInfo>
<StateInfo><Name>RUNNING</Name><Property>Run</Property></StateInfo>
</TaskState>
</Object>

</Profiler>
</OperatingSystem>

Listing 5: Sample iSYSTEM Profiler XML for EB AutoCore OS Task State Profiling without Instrumentation

In the upper section (“Types”) an enumeration type is defined (“Type_TaskState_ MAPPING”), which
maps a task name, displayed in the winIDEA Profiler to its corresponding state variable in the OS task
status/control structure/array.

In the lower section (“Profiler”), a new profiler object is created. It is defined as a “TASKSTATE” object,
telling the profiler that this object is used for OS task state reconstruction. The “Type” and “Expression”
tags tell the profiler to use the “Type_TaskState_ MAPPING” for the task state analysis.

13 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

The OS Profiler options only lists the object “Tasks”, as depicted in Figure 5.

RTOS Profiler Options >

Operating System
EB AutoCore OS5 State -

Objects to profile

s
I5R.2s.Cored
[]15R2s.Corel

Object Info:
Mame: TASKSTATE
Definiton: TASKSTATE
Description: Tasks
Signaling: S{EnumType)

Figure 5: The RTOS Profiler Options menu shows the TASKSTATE profiler object defined in the XML file.

RTCOS Profiler Options X

Operating System
EB AutoCore 05 State e

Objects to profile
[]Tasks

5R.2=, Coral
[]15R.25. Corel

Object Info:
Mame: ISRSTATEQ
Definiton: ISRSTATED
Description: ISR 2s.Corel
Signaling: (05 _kernelData_core).isrCurrent

Once the OS is configured to provide the necessary information and the hardware is configured to
record that information, winIDEA must be made aware of this information. This is done in two steps.
First, the XML file is added to the workspace and then the winIDEA profiler is configured to use this
information. To add the XML file to the workspace, execute the following steps.

1. Open the Debug menu.
Debug

14 of 35 Application Note

www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

2.

15 of 35

Open the OS Configuration Dialog.
¥# Operating System...

Create a new OS Configuration.

MNew, .,

Select OSEK AUTOSAR OS.
OSEK AUTOSAR [

Specify a name, for example, EB AutoCore OS.
Mame it

QSEK AUTOSAR
EB AutoCore OS5 States

Select XML as RTOS description file type.

Property Walue
= Configuration
RTOS description file type ISYSTEM XML

RTOS description file location EBAutoCoreState xml

Select the XML file and click OK.
o

Make sure to load symbols to make the change active.

s

www.isystem.com

Application Note

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

Next, the winIDEA profiler is configured to use the Profiler XML file, too. To do so execute the following

steps.

1.

16 of 35

Open the profiler configuration. Make sure it is the same configuration for which data tracing
of the XML variables is configured.

&

&

Select the hardware tab and make sure that the profiler is activated.
Hardware Prafiler

Change to the profiler tab and make sure that OS objects are selected.
Profiler 05 objects

Click on OS Setup and select the OS for which you have added the XML file.
Operating System

03 Setup... EE AutoCore O5 State 9

Select all tasks and ISRs you want to profile. (Again, only those objects for which the signaling
variable is record will show up in the profiler timeline.)

Ohjects to profile

[]Tasks
[«]15R.2s.Corel
[«]15R.2s.Corel

Confirm with OK.
()4

Start a new trace recording.

>

Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

3.5
3.5.1

winlIDEA Profiler Visualization
Profiler Timeline

If the application is running you should see the OS objects in the profiler timeline as shown in Figure
6Figure 2. If nothing is shown check the trace window = if accesses to the signaling variable have
been recorded. Also make sure that the data section I_']J of the profiler timeline is selected to be visible.

Profiler Timeline X
G-¥ SR/ B4 0 Al#FHAARAQ Total 10835
380ms 390ms 00ms 410ms 420ms 430ms 40ms 450ms 360ms 470ms 450ms 490ms 500n
Data History -~
M Init_Task

Il SchMDiagStateTask_zems
B T_10eKs

Il SUSPENDED
1 QUARANTINED
I NEW

I READY_SYNC
1 READ_ASYNC
Bl RUNNING

B WAITING

Bl T_1ems_e

Il SUSPENDED
Il QUARANTINED
B nEW

Il READY_SYNC |
I READ_ASYNC | | | | |

I RUNNING Il 1] 1 Il 1 Il 1 L 1 Il 1

B WATTING
LR RN RN RN R AR RN AR R AR IR AR ANANY!

BT NS e
I SUSPENDED NINEEEENENEN NN NN NN NN NN ENNRENEN INNNNNNREN
(AN RR R AR

NEENNN NN NN NN NN NN NNE INNENNEENENNNNENENANNNNNNNENEENENNEEEN]
I QUARANTINED

B nEw
I READY_SYNC

I READ_ASYNC

L RUNNING

Bl WAITING

B T_20M5

I T_seens

B T_seMs

ol T_sms e

B T_saus

Bl T_AirFlowActuater |
Pl T_CalcEngineSpeed

I T_IgnitionHandler

Bl T_LambdaSensor 1 1 1
Il T_ReadDetectionSensor

Bl T_ThrottleHandler

|Used 116/ Free 9856 |-32.70 ms (30.58H2) 42867 msB392.27 ms 0143615 msH157.38 ms (17.28Hz) [

Figure 6: OS Task State Trace (without Instrumentation) in the winIDEA Profiler Timeline.

T_lms_DataProviderl
Il SUSPENDED

I NEW

Il READY_SYNC

Il READY_ASYNC

Il RUNNING

- T_Event_Send2Com
- I8 SchMComTask_588ms
[+~ i SchMComTask_Sms
= I8 SchMComTask_lms
I SUSPENDED

11" I5R2s.Cored
= | CANSR®_ISR

[+~ i Os_Counter_STM@_T@
[+~ I8} MO_ISR_CORE_®

—___—

3.5.2 Profiler Statistics

The winlIDEA Profiler calculates statistics for the OS tasks states. Each state of each task is treated as a
separate profiler object, and thus the statistics are calculated for each OS task state. A sample Profiler
Statistics window is shown in Figure 7. Additional statistics can be calculated by means of iSYSTEM
Profiler Inspectors (see).

17 of 35 Application Note

www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

tatistic

i-¥ %) @ &l A |

£ 151 NO_TASK_CORE_®

-l RUNNING

-1 T_1ems_e

----- Il SUSPENDED

----- Bl RUNNING
----- Il READ_ASYNC
----- Il READY_SYNC

-1 T_1ems_1

-l T_1@eMs

----- 11l SUSPENDED
----- Il RUNNING
----- I8l READ_ASYNC

[+ I8 T_CalcEngineSpeed
- T_LambdaSensor

Count Met Time

[5799 | 98.276158 ms 9
[ges[817.414865 ms 75.
[ez 139.453218 ms 13.
[L 60.828008 ms S
B a5 4.578488 ms 8.
I 7] 718.318 us @
[7ea 111.567854 ms 18.
[e 29.434964 ms 2
[eg] 7.111548 ms 8.
e [TTaagiea4960 ms 43
[T 202.500298 ms 19
97| 276 . 964165 ms 27
e 88.994758 ms 8.

Figure 7: winIDEA Profiler Statistics for OS Task States

18 of 35

www.isystem.com

Met Average Time

.68%|

88%|
63%|

.94%|

45%|

.87%|

71%|
98% |

.88%|

59% |

L97%[]
79%|
.07%|

70%|

16.947

7.936866
1.367286
394,987
181.742
181.472

8.497739
5456.897
288.578

69.728

44 .,994498
718.527
1.887142
8.899475

oW m @ [e R o o

m O @

Period Average

.78%|
13%|
.84% |
.81%[

.81% [

.83%|
.85%|
.83%|
.81%|

Aex]
.87%|
.1e%|

.87% [0

[Y =R =]

23
133

1a.
.879155
1a.
1a.

99

wow

L]

176.335

.983857
.899952
-B66675
.181837
.331688

@ea352

288168
aeeaal

. BBBBET
.579345
.711752
. 993853

Application Note

®

N e e

P @O @

W om @ w0

B2%

.98%

98%

.65%

7%

.83%

98%
48%
98%
98%

76%

.35%
.36%
TTE

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

4 OS Task/ISR2 State Trace with Instrumentation

This section describes how to record a Task/ISRs State Trace by using the EB tresos AutoCore OS Trace
Hooks. These Hooks are OS macros which are executed at special points of interest in the OS execution.
The macros are already part of the standard EB tresos AutoCore OS, but per default, the macros are
defined as “empty”, i.e. do not include any code and therefore do not have any effect. In order to
activate the hooks the macro must instead be defined as trace tool specific code. Such instrumentation
code gathers the relevant info provided via the macro parameters and stores them with an atomic
write operation, into a traceable global variable. This tracing variable also needs to be created by some
instrumentation code. All core may share this trace variable as only the actual write operation to this
variable is relevant. The variable does not need to store any data.

It is also worthwhile mentioning that such a “hybrid” trace solution (i.e. minimal instrumentation code
combined with on-chip trace logic) represents the most efficient trace solution, i.e. has the least
performance requirements with regards to number of data trace channels and trace interface
bandwidth. In addition, some processor-specific instrumentation trace concepts, such as Renesas
RH850 Software Trace or ARM CoreSight System Trace Macrocell (STM), allow for very efficient OS
tracing/profiling solutions.

4.1 OS Configuration

In order to activate the trace tool specific trace macro definitions, the following configurations in the
EB tresos Studio are needed.

The C header file named “Dbg.h” needs to be created containing the new macro definitions.

/*

OS task and ISR2 state tracing macro definitions for EB tresos AutoCore
CPU: Infineon TriCore
Compiler: Tasking

(c) 1SYSTEM 2017

*/
#ifndef DBG H
#define DBG H

#ifndef CPU_CORE_ID
#define CPU CORE_ID OxFELC
#endif

extern unsigned long isystem os trace[2];

/* Tasks */
#ifndef OS TRACE STATE TASK
#define OS TRACE STATE TASK (StatelId,oldValue,newValue) \
isystem os trace[0] = (StateId) | \
(newValue << 8) | \
(_ mfcr (CPU_CORE ID) << 24);
#endif

/* ISR2s */
#ifndef OS_TRACE STATE ISR
#define OS TRACE STATE ISR(IsrId,oldValue,newValue)) \
isystem os trace[l] = (IsrId) | \
(newValue << 8) | \
(__mfcr (CPU_CORE_ID) << 24);
fendif

#endif /* if !defined(DBG H) */
/* [end of file] */
Listing 6: Sample Dbg.h header file containing trace macro definitions for the Infineon TriCore CPU.

19 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

The C header file “Dbg.h” needs to be copied into the EB tresos Studio project directory
“<project_folder>\output\generated\include”.

In order to include the Dbg.h header file into the overall Build process of EB tresos Studio, the
“OsTrace” option within the OS module of the EB tresos Studio ECU project must be enabled.

Also a global variable unsigned long isystem os trace[2] needs to be created, e.g. within a user-
written C source file.
v 0s0S

Name = 0s05

i)

=D
OsNumberOfCores (1 -> 3) |__ 3
OsStackMenitering p [2~
QOsStatus EXTENDED
OsUseGetServiceld Ilb O 2~
OsUseResScheduler % @ 2~
1]

€]
OsTrace W @ &~

Figure 8: The option “OsTrace” of the OS Module must be enabled to activate the Instrumentation code in
“Dbg.h”.

4.2 OS Task State Information

OS task state transitions are signaled by the OS by calling the os_Trace _staTe task macro.

/* Parameters:
StateId = Task Index
oldValue = previous Task State (before state transition)
newValue = next Task State (after the state transition) */

#define OS_TRACE_ STATE TASK(StateId,oldValue,newValue) \
isystem os trace[0] = (StateId << 0) | \
(newValue << 8) | \

(ISYS COREID << 24);

The macro iSYS_COREID is typically an intrinsic function used to retrieve the ID of the executing core.
On an Infineon AURIX device it would for instance be define as _ mfcr (cPu_core_1p).

4.3 OS ISR2 State Information

OS ISR2 state transitions are signaled by the OS by calling the os_Tracr_staTtr 1SR macro.

/* Parameters:
isrId = ISR2 Index
oldValue = previous Task State (before state transition)
newValue = next Task State (after the state transition) */

#define OS_TRACE_STATE TASK(isrId,oldValue,newValue) \
isystem os trace[l] = (isrId << 0) | \

20 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

(newValue << 8) | \
(ISYS COREID << 24) ;

The macro iSYS_COREID is typically an intrinsic function used to retrieve the ID of the executing core.

On an Infineon AURIX device it would for instance be define as _ mfcr (cPu_core_1D).

Note: Grouping the isystem_os_trace variables for tasks and ISRs into an array has the advantage that
only one data trace channel (one address range comparator) of the on-chip trace logic is needed.

4.4

winIDEA Profiler Configuration

A single global trace variable isystem trace is used to record all task and ISR2 information. Configure
winIDEA to record data trace for this variable.

By now the operating system is configured to record all relevant task information into a single variable.
Additionally, the hardware is configured to record all write access to this variable. The last step is to
inform the profiler about how to interpret the content of this variable. For this purpose, a iSYSTEM
Profiler XML as shown in Listing 7 is used.

<?xml version='1l.0' encoding='UTF-8' ?>
<OperatingSystem>
<Name>EB_ AutoCore Demo</Name>
<NumCores>2</NumCores>
<ORTI>0Os.orti</ORTI>

<Types>
<TypeEnum>

<Name>Type TASKSTATE</Name>

<Enum><Name>SUSPENDED</Name> <Value>0</Value></Enum>
<Enum><Name>QUARANTINED</Name> <Value>1</Value></Enum>
<Enum><Name>NEW< /Name> <Value>2</Value></Enum>
<Enum><Name>READY SYNC</Name> <Value>3</Value></Enum>
<Enum><Name>READY ASYNC</Name> <Value>4</Value></Enum>
<Enum><Name>RUNNING</Name> <Value>5</Value></Enum>
<Enum><Name>WAITING</Name> <Value>6</Value></Enum>

</TypeEnum>
</Types>

<Profiler>

<Object>

<Definition>TASKSTATE</Definition>
<Description>Tasks</Description>
<Type>0S:vs_ SIGNAL RUNNINGTASK</Type>
<DefaultValue>NO TASK</DefaultValue>
<Name>TASKSTATE</Name>
<Level>Task</Level>
<Expression>isystem os_ trace[0]</Expression>
<TaskState>
<MaskID>0xFF</MaskID><MaskState>0xFF00</MaskState>
<MaskCore>0xFF000000</MaskCore>
<Type>Type TASKSTATE</Type>
</TaskState>

</Object>

<Object>

21 of 35

<Definition>ISRSTATE</Definition>
<Description>ISRs2</Description>
<Type>0S:vs_ SIGNAL RUNNINGISR2</Type>
<DefaultValue>NO ISR</DefaultValue>
<Name>ISRSTATE</Name>

<Level>IRQ3</Level>
<Expression>isystem os_ trace[l]</Expression>

www.isystem.com

Application Note

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

<TaskState>

<MaskID>0xFF</MaskID><MaskState>0xFF00</MaskState>

<MaskCore>0xFF000000</MaskCore>

<Type>Type TASKSTATE</Type>

</TaskState
</Object>
</Profiler>

>

</OperatingSystem>
Listing 7: Sample iSYSTEM Profiler XML file for OS Task and ISR2 State Tracing by means of Instrumentation

Note: In some cases the XML tag pefaultvalue needs to define with 1nvaLip Task or invanLip 1sr

instead of no_Task or no_1sR, Please refer to the individual ORTI file.

The OS Profiler options lists the objects “Tasks” and “ISR2”, as depicted in Figure 5.

i
Operating System
EE AutoCore OS5 State

{ Objects to profile

1 RTOS Profiler Options

Hooks

>

[#]Tasks

| (S —

I

Object Info:
Mame: ISRSTATE
Definiton: ISRSTATE
Description: ISRs2
Signaling: isystem_os_trace[1]

XML file.

Figure 9: The RTOS Profiler Options menu shows the TASKSTATE and ISRSTATE profiler object defined in the

Once the OS is configured to provide the necessary information and the hardware is configured to
record those information, winIDEA must be made aware of this information. This is done in two steps.
First, the XML file is added to the workspace and then the winIDEA profiler is configured to use this

information. To add the XML file to the workspace execute the following steps.

9. Open the Debug menu.

Debug

10. Open the OS Configuration Dialog.

¥# Operating System...

11. Create a new OS Configuration.

Mew. ..

12. Select OSEK
OSEK A

22 of 35

AUTOSAR OS.
UTOSAR [

www.isystem.com

Application Note

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

13. Specify a name, for example, EB AutoCore OS.

Mame >

QSEK AUTOSAR
EB AutoCore OS5 States Hooks

14. Select XML as RTOS description file type.

Property Value
= Configuration
RTOS description file type iSYSTEM XML

RTOS description file location EBAutoCore StateHooks xml

15. Select the XML file and click OK.
(]S

16. Make sure to load symbols to make the change active.

%]

23 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

Next, the winIDEA profiler is configured to use the Profiler XML file, too. To do so execute the following

steps.

8.

10.

11.

12.

13.

14.

15.

24 of 35

Open the profiler configuration. Make sure it is the same configuration for which data tracing
of the XML variables is configured.

&

Select the hardware tab and make sure that the profiler is activated.
Hardware Prafiler

Change to the profiler tab and make sure that OS objects are selected.
Profiler 05 objects

Click on OS Setup and select the OS for which you have added the XML file.
Operating System
05 Setup,.. EB AutoCore OS State Hooks v

Select all tasks and ISRs you want to profile. (Again, only those objects for which the signaling
variable is record will show up in the profiler timeline.)

Objects to profile

[+]Tasks
[F]1sRs2

Confirm with OK.
()4

Start a new trace recording.

>

Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

4.5 winIDEA Profiler Visualization

4.5.1 Profiler Timeline

If the application is running you should see the OS objects in the profiler timeline as shown in Figure
10Figure 2.

drofiler Timeline

FREIE RN EIEE RN Total 10265

224ms 150us 224ms 200us 224ms 250us 224ms 300us 224ms 350us
1 1 1 1 1 1 1 1

I I 1 I 1 1 I
Data History
Il T_ProcessCAN
Bl T_sms_1_calculate B
- Bl SUSPENDED
ML NEw
- Bl RUNNING
Wl T_ims_DataProviderl
I SUSPENDED

I NEW

I READY_SYNC
I READ_ASYNC
I RUNNING]
I T_lms_DataProvider2
IEl SUSPENDED I
I NEW
I RUNNING [|
I T_Event_Send2Con
i B SUSPENDED
ol NEW
- Bl RUNNING
- If IsRs2
~ Ml CANSRe_ISR
- Bl SUSPENDED
- Bl RUNNING
I CANSRA_TSR N
1l SUSPENDED I
I RUNNTNG I
I 0s_Counter_STHe_Te
B SUSPENDED I
I RUNNING
I 0s_Counter_STHI_To.
I SUSPENDED I

I8 RUNNING v
[Used 116/ Free 108.1G [125.27 us (7.98kHz) 922425 msB224.16 ms[1224.34 ms I 177.01 us (5.65kHz) [

Figure 10: EB tresos AutoCore OS Task and ISR State Trace (via Instrumentation) in the winIDEA Profiler Timeline

25 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

5 Processor-specific Trace Configurations

5.1 Infineon AURIX MCDS

5.1.1 DAP Upload-While-Sampling (UWS)

The Infineon AURIX controller family supports two types of trace interfaces, the high-speed AURORA
Gigabit Trace (AGBT) interface and the lower-speed Debug Access Port (DAP). Obviously the AGBT
interface offers the highest trace bandwidth, but it also requires either the use of emulation adaptors
or the application of high-frequency signal routing on the ECU board layout. Both solutions involve
quite some effort. Therefore, many trace setups use the DAP interface not only for debug access but
also for trace.
Scheduling analysis typically requires trace recording of several seconds. Therefore, it is required to
use the DAP interface in a streaming mode. Such trace data streaming can be accomplished by iSYSTEM
tools by means of its Upload-While-Sampling (UWS) operating mode, ideally running at the maximum
DAP clock speed of 160MHz.
The following winIDEA workspace configuration are need to operate in UWS mode:

- The DAP operation should be set to the maximum performance depending on the target board

layout (Mode: DAP Wide, Clock: up to 160MHz).
- The MCDS should be set to Tick time stamping (Time stamps Source: tick).
- The MCX trigger mode should be set to “never” (MCX.Action.trace_done: NEVER).

CPU Setup
CPU1 CPU2
Debugging Reset Analyzer Aurora SoC Advanced 50C
Querride startup register values HSM
Oec 0 HEX [Enabled

Debug channel

Mode DAP Wide w | Clock kHz

Figure 11: DAP Operation Setting for UWS mode. Up to 160MHz is supported.

MCDS TriCore X TriCore¥ SRI SPB MCX iNET MCDS TriCore ¥ TriCore Y SRI SPE MCX

Action (double didk to edit)

wiu_cnt_15 -
tick_enable ALWAYS
trace_done -

MUY hemals A

Which SRI slave is seen by 5RI1 CPU1 (PSPR,DSPR...) w

Trigger

Trigger Position Eegin W

Which SRI slave is seen by SRI2 CPUO (PSPR,DSPR...) -
Which processor core is seenby POEX | CPUD ~

Which processor core is seenby POBY | CPU1 w

Time stamps

Assume source to be | tick ~

mms [e

Reference dock Main PLL ~

Mote: configure cyde duration in
Hardware/CPU Setup/Debugging

Figure 12: AURIX MCDS Settings for UWS mode

26 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

5.1.2 Data Trace by means of Fine Grain Comparator

Especially when using UWS it is very critical to reduce the trace message generation rate to its absolute
minimum. The table below ranks the various OS trace concepts according to their trace bandwidth
requirements.

Trace Bandwidth | Trace Concept
Requirements

Lowest Running Task / ISR2 Tracing
Medium Task / ISR2 State Tracing by means of Hook Instrumentation
Highest Task State Tracing without Instrumentation

The concept of task state tracing without instrumentation requires the highest bandwidth as many
task state variables need to be observed. If the on-chip trace logic only offers a relatively low number
of address range comparators, the entire OS task state/control array needs to be observed, leading to
the fact that also unnecessary data objects are being traced, wasting quite some trace bandwidth.
The AURIX MCDS offers are very useful feature, called Fine Grain Comparator, to observe a large
number of individual data objects. This allows to focus data trace exactly to those objects relevant for
task state trace. The underlying concept is a 4kByte RAM-based look-up table. Each bit of this RAM is
basically linked to a byte of the address range that is supposed to be observed. So, the 4kByte look-up
table RAM can cover 32kByte of “real” memory. If a bit location in the look-up table to set to 1, this
means that the corresponding byte location will be traced, i.e. if the CPU performs a data transaction
to this location, the data and address can be captured. This concept is ideally suited to cover the OS
task state/control array and “pick out” just those data locations relevant to OS task state trace.

Figure 13 shows a sample MCDS trigger configuration in the winIDEA Analyzer.

Trigger &
Locations ‘
BOUND: 70005508 | |@](0s_taskDynamic)[0]).state] 7 Add...
e .| |[@][((os_taskDynamic)[1]).state]
gFFSE.T- ‘;)B&tes V| [((OS_taskDynamic)[2]).state]
; — |[¥][((05_taskDynamic)[3]). state] |
disabled | J|[((05_taskDynamic)[4]).state] 3

/| [((OS_taskDynamic)[5]).state]
/| [((OS_taskDynamic)[6]).state]
7| [((OS_taskDynamic)[7]).state]
disabled R 7| [((O5 _taskDynamic)[8]).state]
/| [((OS_taskDynamic)[9]).state]
V| [((OS_taskDynamic)[10]).state]
V| [((OS_taskDynamic)[11]).state]
disabled [] V| [((OS_taskDynamic)[12]).state] |'
V| [((OS_taskDynamic)[13]).state] —
/| [((OS_taskDynamic)[14]).state]

PILIIIAE bmmliMimamnl AT BTN mbmbn 1

]:igure 13: AURIX MCDS Fine-Grain Comparator Configuration to trace OS task state variables of the EB
AutoCore OS

27 of 35 Application Note

www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

5.2 Renesas RH850 Software Trace

RH850 Software Trace allows signaling specific software events to an external hardware trace tool by
means of the dedicated CPU instructions peTac #imm10 and perusa rx. When the RH850 CPU executes
any of these instructions it causes the on-chip Software Trace Module to generate a Software Trace
message. These trace messages can either be stored in an on-chip trace RAM (if implemented) or it
can be streamed out via the LPD4 debug port of the RH850 device. The advantage of the Software
Trace streaming via the LPD4 interface is the fact that this functionality is available on any RH850
derivative. However, the user also has to be aware of its limitations, which are:

e Trace Bandwidth limitation of the LDP4 interface

e No support of multi-core Software Trace

e Requires code instrumentation

The DBTAG instruction can is used to create messages for values which are known at compile time,
such as an index of function (Runnable) entries/exits. The DBPUSH instruction is suited for signaling
events which are only known at run-time, such OS task or ISR2 state changes.

By combining these approaches, it is possible to profiles OS tasks, ISR2s and functions (Runnables).
This means the EB tresos AutoCore OS hooks os_trace _state Task and os TRACE STATE ISR are used to
generate Software Trace messages via the DBPUSH instruction. Additionally, functions of interest can
be traced via the DBTAG instruction.

Once the instrumentation is part of the application the trace data can be recorded via winIDEA and the
resulting trace is visualized in the winIDEA profiler timeline. A dedicated winIDEA profiler XML file is
required to make winIDEA aware of how to interpret the recorded data correctly.

5.2.1 RH850 Software Trace Macros

OS task state transitions are signaled by the OS by calling the os_Trace_staTe task macro, as depicted
in Listing 8. In the same fashion, OS ISR2 state transitions are signaled by the os TrRace sTaTe 1SR
macro.

J% =
/* File name: Dbg.h =Y
/* Compiler: GHS */
/% “)

asm void isystem sft taskstate(val)
{
$reg val
mov val, rl0
dbpush rl10-rl0
}

/* Parameters:
StateId = Task Index
oldValue = previous Task State (before state transition)
newValue = next Task State (after the state transition) */
#define OS_TRACE STATE TASK(StateId,oldValue,newValue) \
isystem sft taskstate((newValue << 16) | StateId)

asm void isystem sft isr2state(val)
{
sreg val
mov val, rll
dbpush rll-rl11l
}

/* Parameters:
isrId = ISR2 Index
oldValue = previous Task State (before state transition)
newValue = next Task State (after the state transition) */
#define OS TRACE STATE ISR (isrId,oldValue,newValue) \

28 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

isystem sft isr2state((newValue << 16) | IsrId)

Listing 8: Sample OS task and ISR2 state trace macro implementations using RH850 Software Trace

Alternatively the macros can also be defined as functions, as depicted in Listing 9. In some cases, this
method is easier to realize. However, it requires an additional C source file to be included into the build

process.

/% %
/* File name: Dbg.h %Y
/* =/

/* Parameters:
StateId = Task Index
oldValue = previous Task State (before state transition)
newValue = next Task State (after the state transition) */
#define OS_TRACE STATE TASK(StateId,oldValue,newValue) \
isystem sft taskstate((newValue << 16) | StatelId)

/* Parameters:
isrId = ISR2 Index
oldValue = previous Task State (before state transition)
newValue = next Task State (after the state transition) */

#define OS_TRACE STATE TASK(isrId,oldValue,newValue) \

isystem sft isr2state((newValue << 16) | IsrId)
/% =/
/* File name: isystem sft.c %y
/* Compiler: GHS =
A =/

void isystem sft taskstate (int value)

{
__asm volatile ("mov %0, rl0" :: "X" (value) : "rl0");
__DBPUSH (10, 10);

}

void isystem sft isr2state (int value)

{
__asm volatile ("mov %0, rll" :: "X" (value) : "rll");
__ DBPUSH (11, 11);

}

Listing 9: Sample OS Task and ISR2 state trace macro function implementations using RH850 Software Trace

5.2.2 RH850 Software Trace iSYSTEM Profiler XML

Listing 10 shows a sample iSYSTEM Profiler XML file for OS task and ISR2 trace using RH850 Software

Trace.

<?xml version='1l.0' encoding='UTF-8' ?>
<OperatingSystem>
<Name>EB AutoCore Demo</Name>
<NumCores>1</NumCores>
<ORTI>os.orti</ORTI>

<Types>
<TypeEnum>
<Name>Type TASKSTATE</Name>
<Enum><Name>SUSPENDED</Name> <Value>0</Value></Enum>
<Enum><Name>QUARANTINED</Name> <Value>1</Value></Enum>

29 of 35
www.isystem.com

Application Note

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

<Enum><Name>NEW</Name> <Value>2</Value></Enum>
<Enum><Name>READY SYNC</Name> <Value>3</Value></Enum>
<Enum><Name>READY ASYNC</Name> <Value>4</Value></Enum>
<Enum><Name>RUNNING</Name> <Value>5</Value></Enum>
<Enum><Name>WAITING</Name> <Value>6</Value></Enum>

</TypeEnum>
</Types>

<Profiler>

<Object>

<Definition>TASKSTATE</Definition>
<Description>Tasks</Description>
<Type>0S:vs SIGNAI RUNNINGTASK</Type>
<DefaultValue>NO TASK</DefaultValue>
<Name>TASKSTATE</Name>
<Level>Task</Level>
<Signaling>DBPUSH (10)</Signaling>
<TaskState>
<MaskID>0x0000FFFF</MaskID><MaskState>0x00FF0000</MaskState>
<MaskCore>0xFF000000</MaskCore>
<Type>Type TASKSTATE</Type>

<StateInfo><Name>QUARANTINED</Name><Property>Terminate</Property></StateInfo>

<StateInfo><Name>SUSPENDED</Name><Property>Terminate</Property></StateInfo>
<StateInfo><Name>RUNNING</Name><Property>Run</Property></StateInfo>
</TaskState>

</Object>

<Object>

<Definition>ISRSTATE</Definition>

<Description>ISRs2</Description>

<Type>0S:vs SIGNAIL RUNNINGISR2</Type>

<DefaultValue>NO ISR</DefaultValue>

<Name>ISRSTATE</Name>

<Level>IRQ3</Level>

<Signaling>DBPUSH (11)</Signaling>

<TaskState>
<MaskID>0x0000FFFF</MaskID><MaskState>0x00FF0000</MaskState>
<MaskCore>0xFF000000</MaskCore>
<Type>Type TASKSTATE</Type>
<StateInfo><Name>SUSPENDED</Name><Property>Terminate</Property></StateInfo>
<StateInfo><Name>RUNNING</Name><Property>Run</Property>

</TaskState>

</Object>
</Profiler>
</OperatingSystem>
Listing 10: Sample iSYSTEM Profiler XML File for OS Task and ISR2 Trace using RH850 Software Trace

30 of 35

Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

6 BTF Export

The winlIDEA Profiler supports the export of traces into the BTF format. BTF is a CSV based trace format
that is supported by different timing tool vendors. Before the BTF export is usable the iSYSTEM profiler
XML file must be updated. The Profiler supports the export of tasks, ISRs, Runnables and signals. For
tasks the following BTF mapping reference must be added to the Taskstate node.

<BTFMappingType>Type OS to BTF State Mapping</BTFMappingType>

The BTF mapping must be added to the TypeEnum section of the XML file. For the EB tresos AutoCore
OS the mapping in can be used. The mapping is required to tell winIDEA which OS task state maps to
which BTF state. No mapping is required for Runnables and signals. Note that this mapping is intended
for Runnables and OS task (and ISR2) state tracing. No BTF export is possible for a running task/ISR
trace.

Once the iSYSTEM Profiler XML is updated the following steps must be executed to export a BTF trace
file.

1. Load symbols * to make sure that the updated iSYSTEM Profiler XML is in use.
2. Record a trace with the necessary configuration to record tasks and Runnables.
3. Select the export button in the Profiler timeline, choose BTF export, and export.
Profiler Timeline
,@,?%ﬁ|| Format BTF e

4. This generates a BTF trace file which matches the profiler timeline as shown in Figure 14.

OS Task State Mapping used for the conversion from the EB tresos AutoCore
0S
specific Task State Model to the BTF Task State Model.

0OS Task State BTF Task State

——>
<TypeEnum>

<Name>Type OS_ to BTF State Mapping</Name>
<Enum><Name>SUSPENDED</Name> <Value>Terminated</Value></Enum>
<Enum><Name>QUARANTINED</Name> <Value>Terminated</Value></Enum>
<Enum><Name>NEW</Name> <Value>Active</Value></Enum>
<Enum><Name>READY SYNC</Name> <Value>Ready</Value></Enum>
<Enum><Name>READY ASYNC</Name> <Value>Ready</Value></Enum>

<Enum><Name>RUNNING</Name> <Value>Running</Value></Enum>
<Enum><Name>WAITING</Name> <Value>Waiting</Value></Enum>
</TypeEnum>

Listing 11: Mapping from EB tresos AutoCore OS task states to BTF task states.

31 0of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

Profiler Timeline

G-¥ R B[]0l @BHAARRQ Total [
| 2dmsis0us . |, 24ms 200us . | 224ms230us . | 224ms 300us . |, 224ms 350us
Data History
&~ B T_ProcessCAN
= P T_sms_1_calculate 8
I SUSPENDED
-~ NEW
I RUNNING
£ B T_lms_DataProviderl
-~ SUSPENDED
Bl NEw
-] READY_SYNC
I READ_ASYNC
I RUNNING |
=B T_lms_DataProvider2
I8 SUSPENDED I
Il NEW
“~ I RUNNING |
=BT Event_Send2Cor
L
o NEW
“- 1l RUNNING
E-Iff] 1SRs2

(=] CANSRE_ISR

Il SUSPENDED

[l RUNNING

(=] CANSRA_ISR

1ol SUSPENDED

-l RUNNING

=l 0s_Counter_sTHe_Te
[l SUSPENDED

[l RUNNING

=l 0s_Counter_sTM1_Te
L[l SUSPENDED

i W RINNTNG

2241610%0,5TI T lms DataProviderl,O,T,T lms DataProviderl,O,activate
224167110,5TI_T 1M5 0,0,T,T_1M5 0,0,activate
224172300,5TI_SchMComTask lms,0,T, SchMComTask lms,0,activate
224178330,CORE 0,0,T,0s Counter STMO TO,0,terminate
2241827%0,CORE 0,0,T,T_100MS, 0, precmpt
224183330,C0RE_0,0,T, SchMComTask lms,0,start
224151510,CORE C,0,T, SchMComTask lms,0,terminate
224154280,CORE 0,0,T,T lms DataProviderl, O, start
224230210,C0BE_1,0,I,0s5 Counter STM1 TO,0,resume

1,0,T

0,0,T

r

224230210,CORE 1, (T _40MS, 0, resume

2242364€0,CORE 0,0,T,T 1lms DataProviderl, O, terminate

22423%770,CORE 0,0,T, T 1M5 0,0,start

224252050,5TI_T lms DataProvider2,0,T,T lms DataProviderZ,0,activate

224261840,5TI T 1M5 1,0,T,T_1MS 1,0,activate

224275820,CORE 1,0,1I,08 Counter STM1 T0O,0,terminate

224280400,CORE 0,0, T

224282710,C0RE 0,0, T

224282850,C0BRE_1,0,T,
EE 1,0,T
RE 1,0,T
EE 1,0,T

r

1MS 0,0, terminate
_100MS, 0, resume
_40M5,0,precmpt

_lms DataProviderld,0,starc

r r r
r r r
r r
224284090, CO .

r r

2242897550, COI lms DataProvider2, O, terminate
224302800, C0 0, T, T_1M5 1,0,start

224320240,C0BRE 0,0,I,CANSR4 ISR, 0, resume
224338100,C0ORE 0,0,I,CANSR4 ISR,0,terminate

Figure 14: Sample BTF Export of OS tasks and ISR2

L

T
T
T
T
T
T

Note: The winIDEA Profiler also allows an export of Runnables. However, Runnable trace and profiling
is beyond the scope of this Application Note. Please refer to the dedicated Application Note about
Runnable trace with EB tresos AutoCore.

32 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

7 Inspectors

Inspectors are a winlDEA feature to analyze user-defined metrics in the winIDEA profiler timeline. It
allows the creation of new Profiler objects, so called Inspectors, which can change their state
depending on different events, such as state changes of other objects and timing parameters. This
section demonstrates how inspectors can be used to cover certain advanced timing-analysis use-cases
for the EB tresos AutoCore operating system.

7.1 Task Metric Analysis

Inspectors can be used to calculate the metrics defined in the AUTOSAR Timing Extensions
Specification. Predefined Inspectors exist for a certain subset of those metrics. The Inspectors are
defined in a generic way meaning the metrics are calculated for all tasks in the trace. There is no need
to add a separate Inspector for each task and metric.

If you are interested in using those Inspectors, ask your iSYSTEM contact for the respective Inspectors
JSON file which can be imported into the winIDEA Profiler to make the metrics available.

@-vee@|duanRAAAL
s EWDm; ?_EOm; BOm; Edﬂm; Eiﬁms Eﬁﬁm; 27Dm; E&Dm; 2‘}Dm; Eﬁﬁms 310m5 320m5 330m; 340m; 350m5 Bﬁﬁms 37Dm5
L L L L L L L L L L L L L L L L L L
Data H\story

=l T_108Ms O 00O RN |10 000V
B SUSPENDED | | |
Bl NEW | |
W READY_ASYNC NN [T [|
T RUNNING I I ON OO I 0W ONmn 0 [N 0N O (N O 00w 1]
¥ ActivateToActivate | |
7 InitialPendingTime [] []
7 StartToStart | |
 SlackTime]] |
< ResponseTime] |

Figure 15: Inspectors to calculate Task Metrics for the Task T-100MS

For a further analysis of the Inspector objects, you can utilize the Properties view of the winIDEA

Analyzer. To open the Properties view, select the desired object and press “Alt + Enter”.
Data History
=] T_188MS []
I8 SUSPENDED
10 NEW
I8 READY_ASYNC
5] RUNNING |]
T ﬂctlvateTo.ﬂctluate
gl [nitialPending T
Y StartToStart
7 SlackTime Go To L
Y ResponseTime Markers 2
+- Wl T_18eMs_e
- Wl T_1MS_@
oI T_28MS Filters
+- [l T_seamMs
+- [l T_semMs |

Figure 16: Opening the “Properties” View for a Profiler Inspector Object

Zoom 4

Find »

Properties... |\ Alt+ Enter |

For the task metric “ActivateToActivate”, the relevant object statistic is “Period”.

Profiler Timeline
WY/ B 4ol ®8FAAAQ

3 210m5 ?_?_Dms ?_EOms 24Dm5 ZSOms ?_Bﬂms ?_?Oms ZEQms ?_9Dm5 SDDms 310m5 320m5 Siﬂms 34Dms SSOms SEDms STOms
T P T TP P Lol Lol TP TP P Lol Lol TR TP P Lol TR TPV P TP P Lol T]

Data Hlstory
=- Il T_1eems
Il SUSPENDED
B NEW
Bl READY_ASYNC HINEEINEnm
Bl RUNNING 1IN 0N 0N OO0 mmmn 1

ActivateToActivate

% InitialPendingTime
% StartToStart

% SlackTime

% ResponseTime

Figure 17: Inspector Object “ActivateToActivate” for the Task T_100MS

33 0of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

The Properties view provides the measurements for average, maximum and minimum period (i.e.
“ActivateToActivate” time) along with the time (and link “->”) to its occurrence.

Period Time between consecutive entries [writes
Average period Oceurred at time

Max.period | 100.070350ms | | 15.588560 ms | =

Min. period | 99.928770 ms | [1is5.758310ms | [->

Figure 18: Period Properties for the “ActivateToActivate” Inspector Object

For the task metric “InitialPendingTime”, the relevant object statistic is “Net Time”.

G-FPE B R FWRARRQ

s 210ms 220ms 230ms 240ms 250ms 260ms 270ms 280ms 290ms 300ms 310ms 320ms 330ms 340ms 350ms 360ms 370ms
| | | | | | | | | | | | | | | | |

Data History
Bl T 1eems
il SUSPENDED
ol new
-l READY_ASYNC
1l RUNNING
% ActivateToActivate
7 DR
| StartTostart
5 SlackTime
%P ResponseTime

Figure 19: Inspector Object “InitialPendingTime” for the Task T_100MS

IR JENN IO
| [|

The Properties view provides the measurements for average, maximum and minimum Net Time (i.e.
“InitialPendingTime”) along with the time (and link “->”) to its occurrence.

Met Time 97.556650 ms
Average 8.863736 ms Occurred at time

Max | 18.637030 ms | |15.758910ms | [->

Min [4237310 ms | |215.68680ms | [-»

Figure 20: Net Time Properties for the “InitialPendingTime” Inspector Object

34 of 35 Application Note
www.isystem.com

iSYSTEM Elektrobit EB tresos AutoCore Profiling Application Note

8 Technical Support

8.1 Online Resources

Online Help #

winIDEA and testIDEA
online help

Technical Notes ¥

How-tos for winIDEA
functionalities with scripts

8.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

Knowledge Base #

Tips & tricks categorized by
issue type and architecture

Application Notes

How-to notes on advanced
use-cases

Tutorials ¥

From beginner to expert

Webinars ¥

Technical webinars about
ISYSTEM tools with use cases

iSYSTEM has made every effort to ensure the accuracy and reliability of the information provided in
this document at the time of publishing. Whilst iSYSTEM reserves the right to make changes to its
products and/or the specifications detailed herein, it does not make any representations or
commitments to update this document.

© iSYSTEM. All rights reserved.

350f 35

www.isystem.com

Application Note

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

