ISYSTEM EB tresos Safety OS 2.x Thread
Profiling Application Note

YSTE

Enabling Safer Embedded Systems

This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.

Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.

All trademarks are property of their respective owners.

iSYSTEM is an I1SO 9001 certified company

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

Table of Contents

1 Tal oo [¥ ot o] o WU 2
1.1 (0 R 1 =T [[P PPP 2
2 TiMING ANAlYSIS CONCEPES .oeeuviiieeiiiiie ettt ettt e e e e et e e e et a e e e e sabeeeeesasseeeeassaeeesassseeeeanseeenas 7
2.1 OVEIVIBW .. 7
2.2 OS Running Task Profiling without Code Instrumentationcccoecveeeiriieiiiicee e, 9
2.3 OS Thread-State Profiling by means of Code Instrumentation..........cccceeeevvvveeeeeeeecccnnnenenn.. 10
2.4 OS Thread-State Profiling without Code Instrumentation..........cccoecvveeivciiee e 11
3 RUNNING Thread/Task Profilingcc.cieiiii ittt e eteebe e eba e steeeareens 12
3.1 Operating System ConfigUration......c..uiiiiciiee it e e 12
3.2 ISYSTEM Profil@r XIMIL...ooie ettt ettt e e e e e e tb e e e e e e e e e e aatsaaeeeaeeeenns 12
3.3 ANalyzer CONFIGUIAtION ..oiiiciiiii e e e e et e e e esaaeeeean 13
3.4 o N 11T 1Y o] =PSRN 14
3.5 Extraction of current Task Object in a running Thread........cccueeveeiiieeeiiiiee e, 15
4 Thread-State Profiling by means of Code Instrumentation.........cccceeveiiieiiiiieeciiee e 17
4.1 OVBIVIBW e 17
4.2 Required Code INStrumentationc..uviiiiie i e e e e e e 17
4.3 Operating System ConfigUration..........coocciiei i et eare e e are e e e eanes 19
4.4 ISYSTEM Profil@r XIMIL......uviiiiiiee ettt et e e et e e etae e e e eata e e e e eabae e e e earaeeeeennaeas 20
4.5 ANalyzer CONFIGUIAtION ..o.cccuiiie e e e et e e et e e e e atae e e e aareeeean 21
4.6 PrOTIEI DISPIAY .ttt et e et e e e et e e e et e e e e b e e e e e naae e e eearaeaeeennaeas 22
5 Thread-State Profiling without Code Instrumentation...........cccoveeeeiiiii e 23
5.1 OVBIVIBW e 23
5.2 Thread CoNtrol/Status STTUCTUIES ..ooeeeeeeeeeee ettt ettt e e e e e e et e e e s s s e sasaareeeesesanas 23
53 Operating System Configuration......c.uiiicciiee it e e e 25
5.4 ISYSTEM Profil€r XIMIL......vviii ettt ettt ettt ettt e e s etae e e e bae e e e enbae e e e nbaeeeennnaeas 26
5.5 ANalyzer CoONFIGUIAtIoN ...cccciiii i e e et e e e e eaaeeeeas 27
5.6 o N 11T 1Ty o] =P PP 28
5.7 Hardware Trace Configuration Options for various Processor Architectures 29
6 [T oT<Tot o] RN 31
6.1 TASK IMELIIC ANAIYSIS.ciiiiiiiieiiiiee ettt e e s e e e e e e e s ae e e e e abeeeeeabaeeeesareeas 31
7 =0 =5 0T o NN 34
I =Tol o] ot | YU o] o oY AP U PROPPPRRt 36
8.1 ONIINE RESOUICTESuuvviieieiiiee ettt e eette e e e ettt e e e ettt e e e e ta e e e setaeeeesstaeesabaeeeesssaeesanssnseesnsseeeesnnes 36
8.2 CONEACT ., 36
1 of 36 Application Note

www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

1 Introduction

This application note describes three approaches for OS scheduling analysis on EB tresos Safety OS.
EB tresos Safety OS is a micro-kernel based OS and thus does not follow the approaches known from
classic AUTOSAR OS (i.e. OSEK) implementations.

Tasks and ISR2 objects are all managed by EB tresos Safety OS as threads. The OS kernel operates in
Supervisor mode, whereas the OS threads may run in (lower privilege) User mode or also Supervisor
mode of the CPU.

The memory protection is based on OS objects and OS applications. Each OS object or OS application
has its own memory region, protected by means of the hardware memory protection unit (MPU) of
the processor. In addition, the kernel itself has its own protected memory region. For more information
about EB tresos Safety OS, please refer to the product documentation provided by Elektrobit.

1.1 OS Threads

A thread comprises an execution context for various OS objects. The OS manages several types of
threads such as kernel threads, task threads or ISR threads. A thread also represents a schedulable
entity managed by the OS scheduler. Task threads represent user-defined task, i.e. resemble the tasks
of OSEK-compliant AUTOSAR OSes.

Multiple OS objects may execute within the same thread context, e.g. multiple user tasks may share
the same task thread. However, typically a one-to-one mapping of user tasks to task thread is applied.

® -

suspend

@—resun’e—h f—rtart
+ preempt

wWalt

Figure 1: EB tresos Safety OS Thread-State Model

EB tresos Safety OS defines the following thread state enumeration type:

\include\private\Mk thread.h:

enum mk threadstate e

{ MK_THS IDLE
MK_THS READY
MK_THS_RUNNING
MK_THS NEW

w N = O
~ N 0~ 0~

}i
Listing 1: Thread-State Enumeration Type

2 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

EB tresos Safety OS manages the following objects which can execute within an OS thread:

\include\public\Mk public types.h:

enum mk objecttype e
{

MK OBJTYPE KERNEL, /* Objects belonging to the microkernel */

MK OBJTYPE TASK, /* Task objects belonging to the user */
MK OBJTYPE ISR, /* ISR objects belonging to the user */
MK OBJTYPE QMOS, /* Objects belonging to the QM-0S */

MK OBJTYPE QMOSISR, /* ISR objects belonging to the QM-0S */
MK OBJTYPE SHUTDOWNHOOK, /* A shutdown-hook */
MK OBJTYPE ERRORHOOK, /* An error-hook */
MK OBJTYPE PROTECTIONHOOK, /* The protection-hook */
MK OBJTYPE TRUSTEDFUNCTION, /* A trusted function */
MK_OBJTYPE UNKNOWN /* Must be last */
bi
Listing 2: Thread Type Enumeration Type

In the sample shown below, the OS maintains an array of nk_thread t objects. Each element contains
status information for each task thread, i.e. threads that are used to run user tasks. The sample below
implements six task threads on core 0 (Error! Reference source not found.) and one of core 1 (Error! Re
ference source not found.).

Name Value Type
B8 MK_c0_taskThreads ((Ptr(0x70001A84),Ptr(0x8000C mk_thread_t [6]
@ [0) (Ptr (0x70001A84),Ptr (0x8000CZ mk_thread t
® [1)] (Ptr(0x70001AB4) , Ptr(0x8000C: mk_thread_t
B [2]) (Ptr (0x70001A74),Ptr(0x8000C: mk_thread t
8 (3] (Ptr (0x70001A94),Ptr(0x8000C: mk_thread t
@ regs Ptr(0x70001A94) mk_threadregisters_t *
B name Ptr (0x8000C294) char *
* (name), s "Task_Stl" char [256]
8 next Ptr(0x00000000) = NULL mk_culprit t
@ parentThread Ptr(0x00000000) = NULL mk_culprit t
parentCookie 0x00000000 unsigned long

B xcoreReply
® accounting

(0x00000000, 0x00000000)
(Ptr(0x8000C458) , OXFFFFFFEF)

mk_statusandvalue t
mk_accounting t

state MK_THS_IDLE mk_threadstate_t
queueingPriority 0x00000003 long
runningPriority 0x00000003 long
currentPriority 0x00000000 long
® lastLockTaken Ptr(0x00000000) = NULL mk_lock t *
@ jobQueue Ptr(0x00000000) = NULL mk_jobgqueue_t *
@ eventStatus Ptr(0x00000000) = NULL mk_eventstatus_t *
memoryPartition 0x00000005 long
currentObject 0x00000005 long
objectType MK_OBJTYPE_TASK mk_objecttype_t
applicationld 0x00000001 long
parentCore OXFFFFFFFF long
@ [4] (Ptr(0x70001AA4),Ptr(0x8000C: mk_thread_t
8 [5)

F_lgure 2: Core 0 Task Thread Array‘ '

30f 36

(Ptr(0x70001n64) =

www.isystem.com

Ptr(MK cO_

mk_thread t

Application Note

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

MName
BMK_cl_taskThreads

8 [0]
B regs
B name
* (name),s
B next
@ parentThread
parentCookie

B xcoreReply
@ accounting

Value

((Ptr(0x6000161C) = Ptr(MK_c:
(Ptr(0x6000161C) = Ptr (MK cl_
Ptr(0x6000161C) = Ptr (MK cl_t
Ptr (0x8000C26C)

"cyclic2c2"

Ptr(0x00000000) = NULL
Ptr(0x00000000) = NULL
0x00000000

(0x00000000, 0x00000000)
(Ptr (0x8000C318) , 0XFFFFFFFEF)

Type
mk_thread t [1]
mk_thread t

mk_threadregisters t *

char *

char [256]
mk_culprit_t
mk culprit t
unsigned long
mk_statusandvalue t
mk accounting t

state ME THS IDLE mk threadstate t
queueingPriority 0x00000001 lU;g a
runningPriority 0x00000001 long
currentPriority 0x00000000 long

B lastLockTaken Ptr (Ox00000000) = NULL mk lock t *

& jobQueue Ftr(0x00000000) = NULL mk_jobqueue_t *

B eventStatus Ptr (0x00000000) = NULL mk_eventstatus t *
memoryPartition 0x00000002 long
currentObject 0x00000001 long
objectType MK OBJTYPE TASK mk objecttype t
applicationlId 0x00000002 long
parentCore 0xFFFFFFFF long

Figure 3: Core 1 Task Thread Array - L

The profiler timelines in Error! Reference source not found. show a trace of the currently running t
hread on two cores. Both timelines are based on the same trace recording, but display different time
spans. The upper timeline is zoomed in at the location of the blue and yellow markers of the lower
timeline.

Profiler Timeline x
G- e @4 oAl AAAR Total 3000
us 1s 779ms 200us 15 779ms 250us . d
- —, S —— Lo - e_-_-_-—-—- =
= If't RunningThread_Cored — E—
Mt Idle_Thread
M kTh_c@-idle
M kTh_c@-main
M kTh_cl-idle
M kTh_cl-main
B qTh_c@-qnos L
B qTh_c1-qmos
M tThe_Cyclic2C2
B tThe_InitTask
B tThl_Cyclic | |
B tTh2_Loop L] __]
B tTh3_TaskSt1
M tThd_Taskst2
B tThS_Cyclic2Cl []
=¥ RunningThread_Corel
L] ___|
] v
G- D4 AlsAARAR Total 3000
15 700ms 15 800ms 15 900ms 2s

25 100ms

0 0 0 % D 25 ZI?Dms 25 390!115 25 QQOms 2s Sqﬂms 2s BDIOms 2s 7q0ms 25 SOI(
Data /' Value
x [Enter wildcard expressions
= 1] RunningThread_Cored
M qTh_c@-qmos
B tThl_Cyclic
M tTh2_Loop
Bt tTh3_Taskst1
B tThd_TaskSt2
M tThS_Cyclic2Cl
= If'f RunningThread_Corel
M kTh_cl-idle

M tThe_Cyclic2C2

tTh2_L . v

kTh_c1-idle
|| |

Figure 4: Sample Profiler Timeline (Dual-Core Running Thread)

A complete list of all user tasks, covering all cores, can be found in the array Mx_taskcfgTable[] (see
Error! Reference source not found.). The element Mk _taskcfgTable [n].thread cONtainsa pointertothec
orresponding task thread MK _cx_taskThreads[m] element.

For instance, the element Mk taskcfgTable[4].thread contains a pointer to the corresponding task
thread Mk _c0 taskThreads([2] element (see Error! Reference source not found.).

4 of 36 Application Note

www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

Name

8 MK_taskCfgTable

[0]
(1]
[2]
[3]
[4]

@ threadCfg
® dynamic
8 thread
a8 * (thread)

memoryPartition
currentObject
objectType
applicationId
parentCore
@ stack
maxActivations
@ eventStatus
@8 [S)
@ [6]

@ regs
8 name
* (name), s
B next
@8 parentThread
parentCookie
@ xcoreReply
@ accounting
state

queueingPriority
runningPriority
currentPriority

@ lastLockTaken
@ jobQueue
@B eventStatus

Value

(((Ptr(0x70001A64) = Ptr (MK
((Ptr(0x70001A64) = Ptr(MK_
((Ptr(0x6000161C) = Ptr(MK_
((Ptr(0x70001A84),Ptr (0x800
((Ptr (0x70001AB4), Ptr (0x800
((Ptr (0x70001A74), Ptr (0x800
(Ptr (0x70001A74), Ptr(0x8000
Ptr (0x70001A58)

Ptr (0x70001B&C)

(Ptr (0x70001A74), Ptr (0x8000
Ptr (0x70001A74)

Ptr (0x8000C28C)

"Loop"”

Ptr (0x700016F8) = Ptr(MK_cO
Ptr(0x00000000) = NULL
0x00000000

(0x00000000, 0x00000000)
(Ptr (0x8000C408) , OXFFFFFFFF
MK_THS_RUNNING
0x00000001
0x00000001
0x00000001

Ptr (0x00000000)
Ptr (0x00000000)
Ptr (0x00000000)
0x00000004
0x00000004
MK_OBJTYPE_TASK
0x00000000
OXFFFFFFFF

Ptr (0x70000C08)
0x00000001

Ptr (0x00000000) = NULL
((Ptr (0x70001A94), Ptr (0x800
((Ptr(0x70001AA4), Ptr (0x800

NULL
NULL
NULL

Type
mk_taskcfg_t [7]

mk_taskcfg_t
mk_taskcfg_t
mk_taskcfg_t
mk_taskcfg_t
mk_taskcfg_t
mk_threadcfg_t
mk_task Tt *
mk_culprit_t
mk_thread_t

mk_threadregisters_t *

char *

char [256]
mk_culprit_t
mk_culprit_t
unsigned long

mk_statusandvalue_t

mk_accounting_t

mk_threadstate_t

long

long

long

mk_lock_t *
mk_jobqueue_t *

mk_eventstatus_t *

long
long
mk_objecttype_t
long
long
unsigned long *
long

mk_eventstatus_t *

mk_taskcfg_t
mk_taskcfg_t

Figure 5: MK_taskCfgTable Array

Name
BMK_c0_taskThreads

Value
((Ptr(0x70001A84), Ptr(0x8000¢C

Type
mk_thread_t [6]

@ [0]

@ [1]

8 [2]
@ regs
B name

*(name), s

@ next

5 of 36

(Ptr (0x70001A84), Ptr(0x8000C: mk thread t
(Ptr(0x70001AB4), Ptr(0x8000C: mk_thread t
(Ptr (0x70001A74),Ptr(0x8000C: mk_thread t
Ptr(0x70001A74)
Ptr(0x8000C28C)

"Loop"

mk_threadregisters t *
char *
char [256]

Ptr(0x700016F8) = Ptr(MK c0_i mk_culprit t
Figure 6: MK_cO_taskThreads Array

www.isystem.com

Address
(Virtual) 70001AC4
(Virtual) 70001AC4
(Virtual) 70001B18
(Virtual)70001B6C
(Virtual)70001B6C
(Virtual) 70001870
(Virtual)8000C28C
(Virtual) 70001B74

Application Note

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

However, as mentioned earlier, it is possible that multiple user tasks share the execution context of
the same task thread, i.e. multiple Mx_taskcfgrable(] elements refer to the same Mk cx taskThreads!]
element.

The profiler timeline below shows a sample configuration where the user tasks SchMComTask_5ms
and SchMComTask_10ms execute within the task thread 4.

B-Y¥eBHduaAFNAARR
62ms 100us 462ms 200us 462ms 300us 462ms 400us 462ms 500us 462ms 600us 462ms 700us 462ms 800us 462ms

Code Mewtral Hmory ...
x [0s_T* |
£, 05_TASK_Init_Task
£ 05_TASK_Rte_Event_Task
& 0S_TASK_Rte_Time_Task |]
£ 05_TASK_SchMDiagStateTask_20ms |]
&, 05_TASK_SchMComTask_1088ms
A, 05_TASK_SchMComTask_18ms
£ 05_TASK_SchMComTask_Sms []

Data History
B4 tThd_SchMComTasks_5_18_108ms
= 7 Safety0S_Tasks_of_Threadd
¥ Thread_4_Task_5_10ms
7 Thread_4_Task_4_100ms
¥ Thread_4_Task_6_5ms
¥ Thread_4_No_Task
=11 ((MK_cP_taskThreads)[4]).currentObject .~
n oxe
M exs

-
o -’-

Figure 7: Multiple User Tasks executing within the same Task Thread context

6 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

2 Timing Analysis Concepts

2.1 Overview

Timing analysis of EB tresos Safety OS cannot be accomplished purely by standard methods based on
an ORTI file generated by EB tresos Studio.

The EB tresos Studio does in fact generate an ORTI file also for EB tresos Safety OS. A concept for
running task tracing (RUNNINGTASK) is not provided, instead only a vendor-specific extension is
supported for running thread tracing (vs_RUNNINGTHREAD).

The enumeration vs_ RUNNINGTHREAD lists all objects running within threads, including all user tasks,
isrs and kernel threads. However, the OS object to be used for identifying the currently running thread
is not suitable for hardware-based tracing as it uses multiple memory locations referenced by a
pointer.

os.orti file:

0s
{
ENUM [
"NO THREAD" 0x0,
"Cyclic2Cl" = "MK taskCfgTable[0].threadCfg.name",
"Cyclic2C2" = "MK taskCfgTable[l].threadCfg.name",
"InitTask" = "MK taskCfgTable[2].threadCfg.name",
"Cyclic" = "MK taskCfgTable[3].threadCfg.name",
"Loop" = "MK taskCfgTable[4].threadCfg.name",
"Task St1l" = "MK taskCfgTable[5].threadCfg.name",
"Task St2" = "MK taskCfgTable[6].threadCfg.name",
"Os_Counter STMO TO" = "MK isrCfgTable[0].threadCfg.name",
"mk boot thread core0" = "MK bootThreadConfig[0]->name",
"mk init thread core0" = "MK initThreadConfig[0]->name",
"mk idle thread core(0" = "MK idleThreadConfig[0]->name",
"mk shutdown thread core(Q" = "MK shutdownThreadConfig[0]->name",
"mk auxl thread core0" = "MK auxlThread[0]->name",
"mk aux2 thread core0" = "MK aux2Thread[0]->name",
"mk gmos thread core0" = "MK gmosThreadConfig[0]->name",
"mk protection hook thread core(O" = "MK protectionHookThreadConfig[0]->name",
"mk_error_hook_thread_coreO" = "MK_errorHookThreadConfig[O]—>name",
"mk boot thread corel" = "MK bootThreadConfig[l]->name",
"mk init thread corel” = "MK initThreadConfig[l]->name",
"mk idle thread corel" = "MK idleThreadConfig[l]->name",
"mk shutdown thread corel" = "MK shutdownThreadConfig[l]->name",
"mk:auxl_thrgad_corgl" = "MK_auxTThread[l]—>name",
"mk aux2 thread corel" = "MK aux2Thread[l]->name",
"mk gmos thread corel" = "MK gmosThreadConfig[l]->name",
"mk protection hook thread corel" = "MK protectionHookThreadConfig[l]->name",
"mk error hook thread corel" = "MK errorHookThreadConfig[l]->name"
] vs_RUNNINGTHREAD[], "Running thread identification";
}i

0S XYZ

{
vs_RUNNINGTHREAD = "MK c0 coreVars.currentThread->name";

}i
Listing 3: Sample ORTI file generated by EB tresos Studio

Each element of the vs runniNGTHREAD enumeration maps a thread name (e.g. Task_St1) with an
address of the Mk taskcfgrable array element, containing a string of the thread object name (e.g.
MKitaskagTable[5].threadcfg.namey

In other words, the pointermx_co corevars.currentThread->name points to a name string which is a sub-
element of a MK taskCfgTable[n].threadcfg element associated with a user task n. This relation is
depicted in Error! Reference source not found..

7 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

Nava
BMX_c0_coreVars
8 currentThread

8 * (currentThread)

® regs
8 name

*(hame),s

@8 next

Nare
8 MK_taskC{gTable
. (0]
® (1]
m (2]
2 (1)
m 4]
8 (5]
@ threadcfyg
® regs
8 naze

*(name),s

corelndex

Name

8MK_c0O_taskThreads

= [0)

® (1]

|8 (2)

83
®regs
B nane

*(name),s

® next

Vave

(PLe(Ox700018C0), Prr(0x” =k kernelcontrol (Virtual)700015F0

(PLe{0XTO001A%4), Prr (Oxi mk_thread t

P (0x70001A%4)
PLr(Ox9000C254)
Task st1

Prr (0x70001B6C)

Ve

(((PTr(Ox70001AL4) = Pty mk_taskcfg t [7] (Virtual)£000C284
((Pex (0x70001AE4) = Ptr mk_taskcig t
((Pr(0x60001€1C) = Prr mk _taskcig t

((PLx(OxT70001A84), PLx(ld
((PLr(0x70001AB4), PLr (0
((PEr(OxTOO0LIATA) , Prr (]
((PTr(OXTOO01AS4), Prr(l2
(PEr(0xTO001A%4), Prr (Oxi

PLr(Ox70001A%4)
Prr(0x8000C294)
“Task_sti*
0x00000000

Value

((PTr(0XTOO01AG4),PLr(0) mk_thread t (6]
(PEr(0xT0001A04), Per (Ox! mk_thread t
(PEr (Ox70001AB4) , Prr (Ox1 mk_thread t
(Prr (0x70001A74), Prr(Oxi mk_thread t
(PEr(0xT70001A%4), Prr(Ox! mk_thread t

PEr(0x70001A%4)
PLr(0x8000C29%4)
“Task_sti*

Pr(0x70001846C)

Tywe Addrers
=k_culprit_t (Virtual) 700015F0
(Virtual) 700018C0
=k_hwthreadregis (Virtual) 70001800
char * (Virtual) 700018C4
char [2%€] (Virtual) 8000C254
=k _culprit t (Virtual) 700018C8
Type Aosress
(Virtual) 5000C2B4
(Virtual) 8000C304
mk_taskci{g t (Virtual) 8000C354
mk_taskcfg t (Virtual) 8000CIA4
mk_taskcfg t (Virtual) 8000C3F4
mk_taskcfg t (Virzual) 8000C444
mk_threadcfg t (Virtual)8000C44d4
mk_threadregiste (Virtual)@000C444
char * (Virtual) 8000C448
char [256) {(Virtual) 8000C25%4
long (Virtual) 8000C44C
Type Address
(Virtoal) 70001AC4
(Virtual) 70001AC4
(Virtual) 70001818
(Virtual) 70001B6C
(Virtual) 70001800
mk_threadregiste (Virtual)700018C0
char * (Virtual) 700018C4
char [256] (Virtual) £000C2594
mk_culprit t (Virtual) 700018C8

Figure 8: Sample MK_cO_coreVars.currentThread->name, pointing to MK_taskCfgTable[5]->name (Task_St1)

8 of 36

www.isystem.com

Application Note

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

2.2 OS Running Task Profiling without Code Instrumentation

OS running task profiling is based on tracing a global OS data object which contains status information
about the currently running thread. As mentioned earlier these threads may either be kernel threads,
user threads or ISR threads.

The core-specific global variable, e.g. Mk _c0 corevars.currentThread, cOntains a pointer to an element
of amk_thread t type array.

Description

Data Object pointed to by

MK cX coreVars.currentThread

MK_cX_taskThreads]]

user task thread element of core X

MK_cX_isrThreads|]

user ISR2 thread element of core X

MK_cX_auxN_Threads[]

kernel thread elements (aux1/aux2) of core X

MK_cX_idleThread

Idle thread of core X

In case multiple user tasks are mapped into a task thread, winIDEA Analyzer Inspectors can be used to
derive the currently running user task. However, this requires that, in addition to the currently running
thread, also the currently active object of the corresponding thread is traced

(MK_cX_taskThreads [n].currentObj ect).

Name Value
8 MK _c0_taskThreads ((Ptr(Ox70001A864),Ptr(0x8000
® (0] (PEr(OxT70001A84),Per(0Ox8 -
® (1) (PLr(Ox70001AB4), Ptr(0x8 -
® [2]) (PEr(Ox70001A74),Prr(0xs >
e (3] (PLr(Ox70001A94),PLtr(0x8
@ regs PLr(Ox7 J1A94) _c
8 name Ptr (0x8000C294)
*(name),s "Task_sStl"
@ next Ptr (0x0000000C) = NULL
@ parentThread PEr(0x00000000) = NULL
parentCookie X
@ xcoreReply (0x00000000,0x00000000) mk_statusandvalue t
@ accounting (Ptr(0x8000C458), OXFFFFFFFF) mk accounting t
state MK _THS IDLE mk_threadstate t
0x00000003 long
x0 3 long
0x00000000 long
PLr (0x00000000) NULL mk lock t *
Prr() = NULL mk jobqueue t *
Ptr(0x00000000) = NULL mk_eventstatus t *
kv3 £ SR
b xC 0S long
el 2 —\r—;r u"_':n'- '_c_-' i.._‘t‘ -:y;,_:
applicationld 0x00000001 long
parentCore OXFFFEFFEEF iong
@ [4) (Ptr (0x70001AA4) , Ptr(0x8000C: mk_thread t
® [5) (Ptr(0x70001R64) Ptr(MK c0 mk thread t

Figure 9: currentObject Element of the Core 0 Task Thread 3 (MK_c0_taskThread|3])

9 of 36 Application Note

www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

2.3 OS Thread-State Profiling by means of Code Instrumentation

The OS supports thread-state tracing by means of the macro MK_TRACE_STATE_THREAD. This macro
has already been placed into the source code at all the relevant code sections, but is disabled (i.e.
defined as empty) per default in the source code files (lib_src) of the MicroOS plugin provided by
Elektrobit.

The concept is to overwrite the default (empty) macro with iSYSTEM tool specific instrumentation code
that collects all relevant information and copies this data into a global data object which is monitored
by means to hardware trace.

The concepts for inserting the trace instrumentation code into the code generation and build process
to EB tresos Studio and the configuration of the iSYSTEM trace analyzer are described in section 4
Thread-State Profiling.

Error! Reference source not found. shows a sample iSYSTEM profiler timeline of threads distributed o
ver two cores, including the detailed state (IDLE/NEW/READY/RUNNING) of each thread.

Profiler Timeline x
Gy @ 4 g8 MFAAAA Total 2999s |

Data
= ¥ Threads

= M InitTask

= M Loop

= M Cyclic

M Cyclica(l

+ B Task_St1

+ B [Task_St2

M Cyclic2(2

+ B NO THREAD CORE @
Profiler Timeline
G- ¥Ne @ 4als AR A Total 29995

15 757ms 610us . 15 757ms 620us i 15 757ms 630us i 15 757ms 640us i 15 757ms 650us i 15 757ms 660us
Data Value History

= i1 Threads Cyclic2(
= M Loop
M READY
B RUNKING
= M Cyclic
M IDLE
M NEW
B READY
M RUNNING
= M [Cyelic2l
M IDLE
B NEW
M RUNNING
= M Cyclic2(2
M IDLE
B NEW
B RUNNING
Bt Task_St1
= B Task_St2
M mic_idle_thread_corel
= M mk_gmos_thread_cored
= B0 NO_THREAD_CORE_@
+ B NO_THREAD_CORE_1

Figure 10: Thread-State Profiling Timeline by means of MK_TRACE THREAD_STATE Instrumentation

10 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

2.4

In case code instrumentation is not an option, the current state of each thread can still be traced.
Alternately, the current state of each thread can be monitored by tracing a dedicated variable within
a thread control and status structure. These structures are grouped into arrays. EB tresos Safety OS
maintains one array per core and per thread type. Typically, EB tresos Safety OS uses 6 thread types,
i.e. there are 6 arrays per core. The most appropriate trace configuration for tracing the thread state
variables depends on the capabilities of the on-chip trace logic of the processor, i.e. available trace
interface bandwidth and data trace filtering (qualifier) features.

Figure 11 shows a sample iSYSTEM profiler timeline of threads derived from a data trace of the various
thread state variables.

OS Thread-State Profiling without Code Instrumentation

Profiler Timeline "
@-¥RE B4 o)A FHAARARX Total 25185
551ms 870us 15 551ms 880us 15 551ms 800us 15 551ms O00us 1s551ms910us 1s551ms 920us 15 551ms 930us 15 551 ms 9400
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Data History !
EIEI = . Lr T]
[+ I8l NO_TASK_CORE_@] 1]
[+ I8l SchMDiagStateTask_28ms
[+ Rte_Time_Task
=~ 1 SchMComTask_1ms

[+ ol Cce_QMos_Thread

- il NO_TASK_CORE_®

& Bl CO_IDLE Thread I —
[l READY]
L RUNNING I
G- PE B A #RAARR Total 30395
Ous E99me100us G9msTi0us G9msius B99ms130us G9meld0us G98meS0us 099ms160us B99msT70us G98meB0us G99ms1%0us B99ms2
Data History ;
x| 7
- iTasks! T —

7Bl SchMDiagStateTask_2ems
7] Rte_Time_Task
-] Rte_Event_Task
Ll IDLE
i READY
Wl RUNNING
el NEW
i~] SchMComTask_lms
- B CANSRA_ISR
Ll IDLE
-l RUNNING
ML NEW
+/- Bl C@_QMoS_Thread
- il C@_IDLE_ Thread
i~ Bl READY
-1l RUNNING
=1 Runnables
£%; SWC_ModifyEcho_ModifyEcho
£%; SWC_CyclicCounter_SetCounter
f&; SWC_CyclicCounter_Cyclic

Figure 11: Thread-State Profiling Timeline by means of Data Trace of Thread State Variable

11 of 36

Application Note

www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

3
3.1

Running Thread/Task Profiling

Operating System Configuration

Making winIDEA aware of the target operating system (OS) can be accomplished by reading in an OS
description file. In case of an OSEK-compliant AUTOSAR OS, this OS description file is the so-called ORTI
file, generated by the OS generator of the AUTOSAR tool (e.g. EB tresos Studio). However, as
mentioned earlier, for running thread tracing of EB tresos Safety OS, this ORTI file based approach is
not applicable. Instead, an iSYSTEM-proprietary XML needs to be used to describe the target OS.

An OS description file can be imported into winIDEA via the menu: “Debug — Operating System...” as

shown in Figure 12: Selection of the iISYSTEM Profiler XML FileFigure 12.

Operating System

g(osex AUTOSAR] Safety0S20_ThState N L

OSEK AUTOSAR] Safety0S20_RTh

Edit options X

Property Value
Configuration
RTOS descnption file type ISYSTEM XML

RTOS descnpton file location \generated\isystemProfilerConfigRunTh.xm|

Figure 12: Selection of the iSYSTEM Profiler XML File

3.2

iSYSTEM Profiler XML

The figure below shows a sample profiler XML file.

€2xml version='1.0' encod

Cl<OperatingSystem>

<Name>SafetyOsDemo</Name>

<NumCores>2</NumCores>

<Types>
<TypeEnum><Name>TypeRunningThreadsymbol</Name>

<Enum><Name>Idle_Thread</Name> <Value>0x00</Value></Enum>

<Enum><Name>tThO_InitTask</Name> <Value>§amp,MK_c0_taskThreads[0]</Value></Enum>
<Enum><Name>tThl_Cyclic</Name> <Value>samp,;MK_cO_taskThreads([1]</Value></Enum>
<Enum><Name>tTh2_Loop</Name> <Value>§amp ;MK _cO_taskThreads[2]</Value></Enum>

<Enum><Name>tTh3_TaskStl</Name> <Value>&MK_cO_taskThreads([3]</Value></Enum>
<Enum><Name>tTh4_TaskSt2</Name> <Value>&,MK cO_taskThreads([4]</Value></Enum>
<Enum><Name>tThS5_Cyclic2Cl</Name> <Value>samp;MK_c0_taskThreads[S5]</Value></Enum>

<Enum><Name>qTh_c0-gmos</Name> <Value>&MK_c0_auxlThread</Value></Enum>
<Enum><Name>kTh_cO0-main</Name> <Value>gamp,;MK_c0_aux2Thread</Value></Enum>
<Enum><Name>kTh_c0-idle</Name> <Value>samp;MK_c0_idleThread</Value></Enum>
<Enum><Name>tThO_Cyclic2C2</Name> <Value>&,MK cl_taskThreads[0]</Value></Enum>
<Enum><Name>qTh_cl-gmos</Name> <Value>samp/MK_cl_auxlThread</Value></Enum>
<Enum><Name>kTh_cl-main</Name> <Value>&MK_cl_aux2Thread</Value></Enum>
<Enum><Name>kTh_cl-idle</Name> <Value>&MK_cl_idleThread</vValue></Enum>
</TypeEnum>
k</Types>

<Profiler>
<Object>
<Definition>RunningThread CoreO</Definition>
<Expression>(MK_c0_coreVars) .currentThread</Expression>
<Type>TypeRunningThreadsymbol</Type>
<DefaultValue>Idle_ Thread</DefaultValue>
</Object>
<Object>
<Definition>RunningThread Corel</Definition>
<Expression> (MK_cl_coreVars) . currentThread</Expression>
<Type>TypeRunningThreadSymbol</Type>
<Defaultvalue>Idle_Thread</DefaultValue>
</Object>
</Profiler>

L</OperatingSystem>

Figure 13: Sample iSYSTEM Profiler XML File

12 of 36

www.isystem.com

Application Note

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

The XML file consists of two major sections. The Types section contains a enumeration type
TypeRunningThreadSymbol that maps the thread names (displayed within the profiler) to data values
(addresses of data objects in the ELF file). The data values represent the data obtained by the profiler
by tracing the data objects as described in the »Profiler« section of the XML file.

The profiler section describes that the global data objects, used by the OS for signaling the currently
running thread, have the symbol name WMk co0 corevars.currentThread for core 0, or
»MK_c1_coreVars.currentThread« for core 1, respectively. The content of the XML can be derived
from the OS objects MK cx taskThreads, MK cX isrThreads and alsO MK cx auxThread and
MK cX_idleThread).

3.3 Analyzer Configuration

The OS profiler of the winIDEA analyzer can be enabled by selecting »OS objects« in the »Profiler« tab
of the analyzer configuration dialog. The »RTOS Profiler Options« dialog (opened via »0S Setup...«)
allows enabling/disabling of individual OS objects in the analysis.

Hardware Profiler Coverage

Profile

[]Code Operation mode Range
Advanced... Trigger at

[Joata (Default)

[“]0s objects 0S Setup...

LIAUX | RTOS Profiler Options X

[Network 5
Operating System

Code Areas Safety0S20_RTh

Objects to profile

®2IRunningThread_Cored

7RunnmgThread_Corel

Data Areas Object Info:
Name: RunningThread_Core0
T T -
%7:23 ,':: Definiton: RunningThread_Core0
\ Description: RunningThread_Core0
Signaling: (MK_c0_coreVars).currentThread

Figure 14: OS Running Thread Configuration in the iSYSTEM Analyzer

13 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

3.4 Profiler Display

The profiler timelines in Figure 15 show a trace of the currently running thread on two cores. Both
timelines are based on the same trace recording, but display different time spans. The upper timeline
is zoomed in at the location of the blue and yellow markers of the lower timeline.

A dark-red profiler state bar indicates that the corresponding core is currently executing this thread. A
dark-blue bar indicates that there a multiple state transitions and the user must zoom in to see further
details of each state transition.

Profiler Timeline x
G-V @ 4 AMRAAAR Total 3.000 s

- - - 8 - -~ - - 15T TE 200 - - - - i - - I5TTome S - -
Data V. History ~

= Iy RunningThread_Cored
M Idle_Thread
B kTh_c@-1dle
M kTh_c@-main
B kTh_cl-idle
M kTh_cl-main
B qTh_c@-qmos |
M qTh_cl-gmos
B tThe_Cyclic2C2
M tThe_InitTask
M tThl_Cyelic | |
| tTh_Loop |
B tTh3_TaskStl
M tThd_TaskSt2
M tThS_CyclicXl
= Iy RunningThread_Corel '
M kTh_cl-1dle I I
M [tThe_Cyclicd(2 |] -

Sy @ 4 oA AFA AR Total 3.000 s

_ 1s700ms 1s800ms 1s900ms 2 _ 25100ms 25200ms 25300ms 2s400ms 2s500ms 25600ms 2s700ms 25 80(
Data Value History

¥4 RunningThread_Cored tTh2_L . .

M qTh_c@-gmos
M tThl_Cyclic
M tTh2_Loop

B tTh3_TaskStl
M tThd_TaskSt2
B tThS_Cyclic2C1
= 14 RunningThread_Corel kTh_c1-idle !

M kTh_cl-idle
M tThe_Cyclica(2

Figure 15: Sample Running Thread Profiler Timeline

14 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

3.5 Extraction of current Task Object in a running Thread

However, as mentioned earlier, it is possible that multiple user tasks share the execution context of
one task thread, i.e. multiple vk taskcfgTable[] elements refer to the same MK cx taskThreads|]
element.

Figure 16 and Figure 17Error! Reference source not found. show a sample thread configuration.
Threads 0 to 3 are used to run only one dedicated user task, whereas thread 4 is used to execute the
tasks SchMComTask_100ms, SchMComTask _10ms or SchMComTask 5ms, i.e. the element
MK_cO_taskThread[4].currentObject can either be 4, 5 or 6.

The value x indicated by MK c0 taskThread[n].currentobject relates to an element x in the
MK taskCfgTable[].

Name Value

B8 (((MK_taskCfgTable) [4]) .threadCfg) .name Ptr(0x40129E82)
*((((MK_taskCfgTable) [4]) .threadCfg) .name) "SchMComTask 100ms"

B (((MK_taskCfgTable) [S]) .threadCfg) .name Ptr(0x40129E94)
*((((MK_taskCfgTable) [S5]).threadCfg) .name) "SchMComTask 10ms"

B (((MK_taskCfgTable) [6]) .threadCfg) .name tr(0x40129EBC)
*((((MK_taskCfgTable) [6]) .threadCfg) .name) "SchMComTask Sms"

Figure 16: Sample User Task Configuration

Profiler Timeline
BV PE B A MR AR
-62m; 100us) 462m; 200us . 462rnsl 300us . 462ms|400us) 462ms| 500us . 462ms| 600us . 462ms| 700us) 462ms| 800us) 462ms|
Code [Neutral] History
x |os_T-
£, 05_TASK_Init_Task
B, 0S_TASK_Rte_Event_Task
£, 05_TASK_Rte_Time_Task
£,105_TASK_SchMDiagStateTask_28ms

5, 05_TASK_SchMComTask_1088ms
£x, 05_TASK_SchMComTask_18ms | | |

fx, 0S_TASK_SchMConmTask_Sms]
Data History
Sl -4 tThd_SchMComTasks_5_18_180ms
= ¥ Safety0S_Tasks_of_Threadd 1

7 Thread_4 Task_5_10ms

¥ Thread_4_Task_4_188ms

¥ Thread_4_Task_6_S5ms

¥ Thread_4_No_Task :
=-Ifq ((MK_c@_taskThreads)[4]).currentObject .

o exe
M ax5

M 8xb
M oxd

Figure 17: Deriving user tasks from a Task Thread by means of Inspectors

The iSYSTEM profiler features so-called profiler “Inspectors”. These inspectors basically allow a user-
defined post-analysis of the profiler timeline and can used for sophisticated, used-specific event-chain
analysis of trace recordings, presented by the profiler.

An inspector allows to create a new profiler object, derived from the analysis of already existing profiler
objects.

15 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

In the given example, the inspector creates 4 new profiler objects, derived from the existing profiler
objects “RunningThread” and the current object (i.e. currently running user task) of thread 4.

This inspector basically implements (describes) a state machine as depicted in Error! Reference source n
ot found..

Each state of the state-machine represents an Inspector Object on the Profiler Timeline e.g. the state
“Task 5” represents the Inspector Object Thread 4 Task 5 10ms as shown in Figure 18.

Thread 4 not running

Thread 4 not running

¢ FUNMing

Object==4

Figure 18: Inspector state-machine

Inspector X

Nome | SafetyOS_Tasks_of_Threadd]

visible [/]
Barents Events
Ares Add... Name Ares Type Trigger Formula Add...
Data/RunningThread/tTh4_SchMComTasks_S_10_100ms Thread4 Ob) is 6 Oxb State Activated /
Edi... Threadd_Obj is 4 04 State Actrvated / Edit...
Threadd Ob)is 5 OS5 State Actvated /
Remove Threadd_Running (Th4_SchMComT... State Actvated / Remove
Threadd_idle Tha_SchMComT... State Deactivated /
< >
States Time constraints
Default state | Thread_4_No_Task - Name Formula Add...
Name Transitions Add... Ede.
Thread_4_Task_5_10ms Thread_4_No_Task, Thread_4_Task_4_100ms, Thread_4.
Thread_4_Task_4_100ms Thread_4_No_Task, Thread_4_Task_S_10ms, Thread_4_. Ed... e
Thread_4_Task_6_5ms Thread_4_Task_4_100ms, Thread_4_Task_S_10ms, Thre.
Thread_4_No_Task Thread_4_Task_S_10ms, Thread_4_Task_6_Sms, Thread. Remove
Figure 19: Sample Inspector Configuration in the Inspector GUI of the winIDEA Analyzer
16 of 36 Application Note

www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

4 Thread-State Profiling by means of Code Instrumentation

4.1 Overview

The OS supports thread state tracing by means of the macro vMx_trace stare terREAD. This macro has
already been placed into the source code at all the relevant code sections, but is disabled (i.e. defined
as empty) per default in the source code files (lib_src) of the MicroOS plugin provided by Elektrobit.

4.2 Required Code Instrumentation
4.2.1 Definition of the Thread State Tracing Hook

The default definition of the macro can be found in the MK_kconfig.h header file included by all
relevant kernel source files. Per default the macro is defined as empty, thus it must be replaced by an
iSYSTEM trace specific definition.

In the MK_kconfig.h below, the default definition has been replaced by an include of another header
file isystemOsTrace.h.

\include\MK kconfig.h:

/* Use external trace tool if selected.
*

* ILINKSTO Microkernel.Function.MK TRACE STATE THREAD, 1
* ldoctype src
*/
#if MK USE TRACE
/* Include the header file that defines the trace tool's implementation of
MK TRACE STATE THREAD.
*/

#include <isystemOsTrace.h>

/*
#define MK TRACE STATE THREAD (typ,id,name,old,new) \

MK OmDumpThreadStateChange (typ, id, name, old, new)
%/

#else

#include <isystemOsTrace.h>

/*

#define MK TRACE STATE THREAD (typ, id, name, old, new) do { } while(0)
*/

#endif

Listing 4: Enabling the iSYSTEM Instrumentation Code in MK_kconfig.h

17 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

The iSYSTEM trace specific implementation of the vx_trace stare THrREAD Macro is listed below.
The isystemOsTrace.h header file must be in the folder \include\isystemOsTrace.h.

/*
* File: isystemOsTrace.h
* iSYSTEM EB tresos SafetyOS Thread State Trace Instrumentation
* MK TRACE STATE THREAD macro definition

* */
#ifndef isystemOsTrace H
#define isystemOsTrace H

extern unsigned long isystem os trace[l];
#ifndef MK TRACE STATE THREAD

#define MK TRACE STATE THREAD(typ, id, name, old, new) \

do { \
isystem os trace[0] = (mfcr(0xFEI1C)<<30) | (new<<28) | (OxXFFFFFF&(int)name); \
} while (0)

fendif

#endif /* if !defined(isystemOsTrace H) */

Listing 5: MK_TRACE_STATE_THREAD Macro Defintion of iSYSTEM Trace

Parameter Name Description

Typ Thread object type
(not used for thread state trace)

Id Integer ID of the thread
(not used for thread state trace)
Name Pointer to the name string of the thread

(e.g. MK _taskCfgTable[5].threadCfg.name)
Only the lower 24 bits of the pointer value are communicated to the trace
tool. The upper bits are derived from the ELF file.

old Previous state of the thread, before the current state-transition.
(not used for thread state trace)
New New state of the thread, after the current state-transition.

4.2.2 Definition of the global Variable isystem_os_trace

The global data object isystem os_trace must be linked into a data memory region that is assigned to
the kernel (.BSS section of the kernel). This can be achieved by added an iSYSTEM trace specific source
file, containing the global variable definition, to the build process of the kernel library. As all OS kernel
source files use the prefex “MK_k_” also the iSYSTEM source file needs to be named accordingly, e.g.
MK_k_isystem.c. The code listing below shows the definition of the global variable isystem os trace
in the Mk_k_isystem.c source file.

/
file: Mk k isystem.c

1SYSTEM EB tresos Safety OS Thread State Trace Instrumentation
Global variable used for OS Thread State tracing.

Needs to be accessible by kernel.

% X X ok

*/

unsigned long isystem os trace[l];

Listing 6: Definition of isystem_os_trace Variable

18 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

4.2.3 Adding the Instrumentation Code into the Build System

The Mk _k_isystem.c source file can be added to the kernel library file list by extending the
MK LIBSRCKERN KLIB BASELIST macro in the MicroOs_filelist.mak file.

\make\MicroOS filelist.mak:

#
Lists of base filenames for the kernel library
#
MK LIBSRCKERN KLIB BASELIST is the list of all files in the plugin/lib src/kernel
directory that

go into the kernel library.

The files are listed without prefix or extension.

DON'T PUT SYSTEM-CALL KERNEL-SIDE FUNCTIONS HERE! - Put them in
MK_SYSTEMCALL_BASELIST! I

MK LIBSRCKERN KLIB BASELIST += isystem

Listing 7: Makefile modifications for adding MK_k_isystem.c to the Build Process

4.3 Operating System Configuration

Making winIDEA aware of the target operating system (OS) can be accomplished by reading in an OS
description file. In case of an OSEK-compliant AUTOSAR QS, this OS description file is the so-called ORTI
file, generated by the OS generator of the AUTOSAR tool (e.g. EB tresos Studio).

For thread-state tracing of EB tresos Safety OS, this ORTI file based approach must be extended by
means of an iISYSTEM-proprietary XML file. An OS description file can be imported into winIDEA via the
menu: “Debug — Operating System...” as shown in Figure 20.

1s 757ms 640us

Operating System

[B2[[0SEX AUTOSAR] Safety0S20_ThState N
[][0SEK AUTOSAR] Safety0S20_RTh gy N Y
|_|[0SEK AUTOSAR] SafetyOS_ORTI
Confiqure...
Edit options X
Property Value

Configuration

RTOS descnption file type ISYSTEM XML

RTOS description file location \outpufigenerated\isystemProfilerConfig xmi

Figure 20: Selection of the iISYSTEM Profiler XML File

19 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

4.4 iSYSTEM Profiler XML
Figure 21 shows a sample profiler XML file used for thread-state profiling via hook instrumentation.

<?xml version='1.0' encoding='UTF-8' 2>
BH<OperatingSystem>
<Name>SafetyOsDemo</Name>
<NumCores>2</NumCores>
<ORTI>orti\os.orti</ORTI>

<Types>
<TypeEnum><Name>TypeThreadstatesymbol</Name>
<Enum><Name>UNDEF</Name> <Value>0xFF</Value></Enum>
¢ <Enum><Name>IDLE</Name> <Value>0x00</Value></Enum>
10 <Enum><Name>READY</Name> <Value>0x01</Value></Enum>
<Enum><Name>RUNNING</Name> <Value>0x02</Value></Enum>
<Enum><Name>NEW</Name> <Value>0x03</Value></Enum>
13 </TypeEnum>
14 + </Types>
15 B <Profiler>
<0Object>

<Definition>TASKSTATE</Definition>
<Description>Threads</Description>
19 <Type>0S:vs_RUNNINGTHREAD</Type>
<DefaultValue>NO_THREAD</DefaultValue>
<Name>TASKSTATE</Name>
<Level>Task</Level>
<Expression>isystem os_trace[0]</Expression>
<TaskState>
<MaskID>0XFFFFFF</MaskID>
<MaskState>0x30000000</MaskState>
<MaskCore>0xC0000000</MaskCore>
<Type>TypeThreadstateSymbol</Type>
<StateInfo><Name>IDLE</Name><Property>Terminate</Property></Stateinfo>
<StateInfo><Name>RUNNING</Name><Property>Run</Property></StateInfo>
</TaskState>
</Object>
</Profiler>
L</OperatingSystem>

Figure 21: Sample iSYSTEM Profiler XML file for Thread-State Profiling via Hook Instrumentation
The XML file can be separated in three major sections:

1. The “ORTI” section includes the standard ORTI file generated by EB tresos Studio. From the
ORTI file the profiler obtains the mapping between the Mk taskcfgTable[].threadCfg.name
values obtained by instrumentation and tracing the isystem os_trace variable.

2. The “Types” section contains an enumeration type TypeThreadstateSymbol that maps thread-
state names (displayed within the profiler) to data values obtained by instrumentation and
tracing the isystem os_trace variable as described in the “Profiler” section of the XML file.

3. The “Profiler” section describes how to decode the data values captured by tracing the
isystem os trace variable.

20 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

4.5 Analyzer Configuration

The OS profiler of the winIDEA analyzer can be enabled by selecting “OS objects” in the “Profiler” tab
of the analyzer configuration dialog.

The “RTOS Profiler Options” dialog (opened via »OS Setup...«) allows enabling/disabling of individual
OS objects in the analysis.

Hardware Profiler Coverage

Profile
- Operation mode Range v
LJ Code
Advanced... Tflqger at
[(Joata (Default) v
0S objects 0S Setup... —
Claux RTOS Profiler Options X
[Network
Operating System
Code Areas SafetyOSZO.ThStote v
Enter filter .\'.v"‘gr
4 Objects to profile
|1 hreads
DO
Data Areas Object Info:
Name: TASKSTATE
Definiton: TASKSTATE
Description: Threads
Signaling: isystem_os_trace[0]

Figure 22: OS Thread-State Configuration in the iSYSTEM Analyzer

21 of 36 Application Note

www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

4.6 Profiler Display

The screen shot below shows a sample dual-core thread-state profile. The threads “Loop”, “Cyclic”,
“Cyclic2C1”, “Task_St1” and “Task_St2” run on the primary core, the thread “Cyclic2C2” executes on
the secondary core.

The profiler timelines in Figure 23 show a state trace of the threads running on two cores. Both
timelines are based on the same trace recording, but display different time spans. The upper timeline
is zoomed in at the location of the blue and yellow markers of the lower timeline.

A dark-red profiler state bar indicates that the corresponding core is currently executing this thread. A
dark-blue bar indicates that there a multiple state transitions and the user must zoom in to see further
details of each state transition.

Profiler Timeline ®
G YV @ & &M FALA A Total 29995 |

Data V. History ~
= i1 Threads
M InitTask
M Loop
M Cyclic
M Cyclic2C1
+ M Task_St1
M [Task_St2|
M Cyelic2(2
+ B MO THREAD CORE @

G-V @& oA ARARA A Total 2995

15 757ms 610us . 15 757ms 620us _15757ms 630us . 15 757ms 640us . 15 757ms 650us i 15 757ms 660us
Data Value Higtory
= | Enter wildcard expression(s|
= ¥ Threads Cyelica2” 1— 1 1 n n
=} Loop
B READY
B RUNNING
= M Cyclic
M IDLE
3 NEW
B READY
B RUNNING

I
I
|
= MCyclicacl]
3 I0LE
 NEW
3 RUNNING
= M Cyelic2(2
HIDLE |
B NEW
3 RUNNING
M Task_S5t1
* M Task_St2
+ 3 mk_idle_thread_corel
+ M uk_qmos_thread_cored T
+ B MO_THREAD_CORE_8 | | | 1 |
% B MO_THREAD_CORE_1 . [|

Figure 23: Sample Thread-State Profiler Timeline

22 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

5 Thread-State Profiling without Code Instrumentation

5.1 Overview

The current state of each thread can be monitored by tracing a dedicated variable within a thread
control and status structure. These structures are grouped into arrays. EB tresos Safety OS maintains
one array per core and per thread type. Typically, EB tresos Safety OS uses 6 thread types, i.e. there
are 6 arrays per core. The most appropriate trace configuration for tracing the thread state variables
depends on the capabilities of the on-chip trace logic of the processor, i.e. available trace interface
bandwidth and data trace filtering (qualifier) features.

5.2 Thread Control/Status Structures

As mentioned above, EB tresos Safety OS typically uses 6 thread types:

Thread Type Description

Aux1 Thread Kernel thread, typically used for the “QMOS” task.
Aux2 Thread Kernel thread, typically used for the “MAIN" task.
Error Hook Thread Kernel thread, used of the error hook task.

Idle Thread Kernel thread, used for the idle task.

ISR Threads User threads, used for ISRs of category 2.

Task Threads User threads, used for user tasks.

The figure below shows all thread control/status arrays of core O listed in a winIDEA Watch window.
The task thread array has been expanded, as well as the structure of task thread 2, showing its
individual structure elements, such as the “state” object (of type “mk_threadstate t”).

23 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

Mame
B ME_cO0_auxlThread
B ME_cO0_aux2Thread
B ME_cO _errorHookThread
B ME_cO_idleThread
B MK cO isrThreads
[01
1]
E ME_cO_taskThreads
H [0]
1]
B 121
[regs
[l name
* (name) , s
next

H H

parentThread
parentCookie

[H xcoreBeply

[H accounting
state
gqueueingPriority
runningPriority
currentPriority
lastLockTaken
jobQueus
eventStatus

H BB

memoryParcition
currentObject
objectType
applicationId
parentCore

[3]

[4]

Value
(Ptr (OxT7000'4034) =
(Ptr (OxT000'40ER) =
(Ptr (OxT0O00'41A8)
(Ptr (OxT7000'4244) =
{({Ptr (Ox7000"42CC) ,1
(Ptx (Ox7000'42CC) , Pt
(Ptr (OxOO0O00'0000D) =
((Ptr (Ox7000"4644),!
(Ptr (OxXT0O00'4644) , Pt
(Ptr (OxXT000'4624) , Pt
(Ptr (OxT7000'4634) ,Pt
PLr (0x7000'4634)

Ptr (0x8003'DF54)
"Rte_Time Task"

Ptr (0x0000'0Q000) =1
Ptr (0x0000'0Q000)

]
o

0

(0, 0)

(Ptr (0x3003'E090) , 41
MK_THS IDLE

3
3
4]
Ptr (0x0000'0000) =1
Ptr (0x0000'0000) =1

Ptr (0x0000'0000) =1

=]

MK_OBJTYPE TASK

(Ptr (0xT0O00'4614) =
(Ptr (0xT000'4654) , Bt

Type

mk_thread t
mk_thread t
mk_thread t
mk_thread t
mk_thread t [2]
mk_thread t
mk_thread t©
mk_thread t [5]
mk_thread t©
mk_thread t©
mk_thread t©

mk_hwthreadregisters_t *

char *

char [256]
mk_culprit_t
mk_culprit_t
unsigned long
mk_statusandvalue t
mk_accounting t
mk_threadstate_t
long

long

long

mk_lock t *
mk_jobgueus_t *
mk_eventstatus_t *
long

long
mk_objecttype t
long

long
mk_thread t
mk_thread t

Figure 24: Thread Control/Status Structures of all six Thread Types

24 of 36

www.isystem.com

Address

[(Vircual) 7000'4084
[(Vircual) 7000"'40F3
[(Virtual) 7000'41B3
[(Vircual) 7000"'4254
[(Vircual) 7000"'42DC
[(Vircual) 7000"'42DC
[Virtual) 70004330
[Virtual) 7000'4664
[Virtual) 7000'4664
[Virtual) 7000'46B38
[Virtual) 7000"470C
[Virtual) 7000"470C
[Virtual) 70004710
[Virtual) B003'DFS54
[Vircual) 70004714
[Vircual) 70004718
(Virtual) 7000"'471C
(Virtual) 70004720
(Virtual) 70004728
(Virtual) 70004730
(Virtual) 7000"'4734
(Virtual) 7000'4738
(Virtual) 7000"473C
(Virtual) 7000"4740
(Virtual) 70004744
(Virtual) 7000"4748
(Virtual) 7000"'474C
(Virtual) 7000"4750
(Virtual) 7000"'4754
(Virtual) 7000"'4758
(Virtual) 7000"475C
(Virtual) 7000"4760
(Virtual) 7000"'47B4

Application Note

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

5.3 Operating System Configuration

Making winIDEA aware of the target operating system (OS) can be accomplished by reading in an OS
description file. In case of an OSEK-compliant AUTOSAR OS, this OS description file is the so-called ORTI
file, generated by the OS generator of the AUTOSAR tool (e.g. EB tresos Studio).

For thread-state tracing of EB tresos Safety OS, this ORTI file based approach must be extended by
means of an iISYSTEM-proprietary XML file. An OS description file can be imported into winIDEA via the
menu: “Debug — Operating System...” as shown in Figure 25.

E

Aregisters_t
Operating System

[OSEK AUTOSAR] EBSafetyNolnstr New... —
T
Configure... E
png
Edit options
Property Value
= Configuration
RTOS description file type iSYSTEM XML
RTOS description file location EBSafetyNo Instr.xml

Figure 25: Selection of the iSYSTEM Profiler XML File

25 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

5.4 iSYSTEM Profiler XML

The figure below shows a sample profiler XML file used for thread-state profiling without
instrumentation.

~Type ThreadState MAPPING</Name>

»<Name>NO_TASK</Name> <Value>DxFF</Values</Enums

-<Name>Init_Task</Name> <Value>0</Valus><Propercy> >Expression</Name><
-<Name>SchMDiagStateTask_20ms</Name> <Value>l</Value><Property><Name>Expression</Name><

>ME_c0_taskThreads[0] .state</Valus></Property>
>ME_c0_taskThreads[1].state</Value> >
. cO_taskThreads [2] . state</Value></Propercy>
>MK_c0_taskThreads [3] .state</Value»</Propertys
>MK_c0_taskThreads[4] .state</Value></Property>

><Name>Rte_Time Task</Name> <Value>2</Value><Property><Name>Expression</Name><
><Name>Rte_Event_Task</Name> <Value>3</Value><Property><Name>Expression</Name

><Name>SchMComTask lms</Name> <Value>4</Value><Property><Name>Expression</Name><
<Enum><Name>CANSR4_ISR</Name> <Value>5</Value»<Property><Name>Expression</Name><Value>MK c0_isrThreads[0] .state</Value></Property></Enum>
<Enum><Hame>UNUSED_ISR</Nams> <Value>6</Valus»<Froperty><Name>Expression</Name><Valus>MK c0_isrThreads[1].state</Value></Propsrty></Enum>
<Enum><Name>C0_QMOS_Thread</Nams> <Value>7</Value»<Property><Name>Expression</Name><Valus>MK c0_auxlThread.state</Value></Propercy></Enum>
<Enum><Hame>C0_MAIN_Thread</Name> <Value>B8</Value»<Property><Name>Expression</Name><Valus>MK c0_aux2Thread.state</Value></Propercy></Enum>
<Enum><Hame>C0_IDLE_Thread</Nams> <Value>9</Valus><Property><Name>Expression</Name><Value>MK o0 idleThread.state</Value></Property></Enum>
-<Name>C0_ErrorHook Thread</Name> <Value>10</Value><Property><Name>Expression</Name><Value>MR cO_errorHookThread.state</Value></Property></Enum>
</TypeEnum>

</Types>
<Profiler>

<Chject>
<Definition>TASKSTATE</Definition>
<Description>Tasks</Descriptions
<Type>Type ThreadState MAPPING</Type>
<Expression>§ (EnumType)</Expression>
<DefaultValue>NO_ TASK</DefaultValue>
<Name>TASKSTATE</Name>
<Level>Task</Level>
<TaskState>
<MaskID>0x0</MaskID>
<MaskState>0xFF</MaskState>
<MaskCore>0x0</MaskCores
<Type>Type_ThreadState</Tvpe>
<BTFMappingType>Type BTFSTATE_MAPPING</BTFMappingTypes
<StateInfo><Name>IDLE</Name><Property>Terminate</Property></StateInfo>
<StateInfo><Name>WAITING</Name><Property>Terminate</Property></5tateInfo>
<StateInfo><Name>RUNNING</Name><Property>Run</Property></StateInfo>
</TaskState>
</Object>

Figure 26: Sample iSYSTEM Profiler XML file for Thread-State Profiling

In the upper section (“Types”) an enumeration type is defined (“Type_ThreadState_ MAPPING”), which
maps a thread name, displayed in the winIDEA Profiler to its corresponding state variable in the OS
thread status/control structure/array.

In the lower section (“Profiler”), a new profiler object is created. It is defined as a “TASKSTATE” object,
telling the profiler that this object is used for OS task state (or thread) reconstruction. The “Type” and
“Expression” tags tell the profiler to use the “Type_ThreadState. MAPPING” for the thread state
analysis.

26 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

5.5 Analyzer Configuration

The OS profiler of the winIDEA analyzer can be enabled by selecting »OS objects« in the »Profiler« tab

of the analyzer configuration dialog.

The “RTOS Profiler Options” dialog (opened via “OS Setup...”) allows enabling/disabling of individual

OS objects in the analysis.

Hardware Profiler Coverage

Profile
RTOS Profiler Options
[Jcode ; ;
A
D Data vance Operating System
|
EBSafetyMolnstr
05 objects 05 Setup...
Objects to profile
[laux
[JRunnables
network [Jprasspoint
Code Areas
| Enter filter string(s)
Object Info:
Mame: TASKSTATE
Definiton: TASKSTATE
Description: Tasks
Signaling: S{EnumType)

Figure 27: OS Thread-State Configuration in the iSYSTEM Analyzer

27 of 36
www.isystem.com

Application Note

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

5.6 Profiler Display

The profiler timelines in Figure 28 show a thread state trace of a sample EB tresos Safety OS
application. Both timelines are based on the same trace recording, but display different time spans.
The upper timeline is zoomed in at the location of the blue and yellow markers of the lower timeline.
A dark-red profiler state bar indicates that the corresponding core is currently executing this thread. A
light-red bar indicates that a thread is active, but currently not running, i.e. it is each in NEW (activated
but not running yet) or in READY (pre-empted by other thread) state.

G-PPe|@| s AR BRAARQ Total 20335
Tms 250us 911ms 300us 911ms 350us 911ms 400us 911ms 450us
Data History

=
=17 Tasks
+ B NO_TASK_CORE_@
- SchMDiagStateTask_2@ms
Il Rte_Time_Task
Bl Rte_Event_Task
™ IDLE
o READY
Il RUNNING
-1 NEW
- B SchMComTask_lms
W IDLE
I READY
I8 RUNNING
o NEw
I CANSR4_ISR
M IDLE
~ 1 RUNNING
I NEW
I C8_QMOS_Thread
I IDLE
o READY
I8 RUNNING
-1 NEW
+ I Ce_IDLE Thread
I READY
I8l RUNNING

Profiler Timeline

@-veelR|duaaEaaaq Total | 03

906ms 907ms 908ms 909ms 910ms 911ms 912ms 913ms 9l4ms 915ms 916ms 917ms
1 1 1 i 1 1 1 1 1 1 1 1

Data 7 History
=1 Tasks
Il Co_IDLE_Thread
CB_QMOS_Thread
CANSR4_ISR 11 11 11
I NO_TASK_CORE_® [([I I [l [I |l I [l e I ([I i
B Rte_Event_Task 1 1 1
Rte_Time_Task
SchMConTask_1ms 1 | 1 1 1 1 I | 1 1
Bl SchiDiagStateTask_20ms

‘Used 1.1G / Free 104.66 -15.19 us (65.83kHz) ‘IQTT‘ZBmsIQ‘H‘ZS ms[911.47 msM1221.18 us (4.52kHz)

Figure 28: Sample Thread-State Profiler Timeline

28 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

5.7 Hardware Trace Configuration Options for various Processor
Architectures

The on-chip trace logic (of each core) must be configured for monitoring all data write accesses to the
thread state variable of each thread. As mentioned earlier this typically involves six thread
status/control arrays.

5.7.1 ARM ETM (e.g. on ARM Cortex R7)

The ARM ETM can be configured to observe the write access to the thread status/control arrays.
However, the number of available address comparator depends on the actual ETM configuration on
the given processor.

The figure below shows a sample ETM configuration on an R7 ETM implementation a Renesas RCAR
M3 SoC.

Address Comparator
A[55:0]: [ME_c0_taskThread A[55:0]: [(MK_cD_auxThrez
0 || T:WR 8 | T:WR
1 9
A[55:0]: [(MK_c0_idleThread A[55:0]: [(MK_cO_errorHook
2 [T: WR 10 || T: WR
Enabled 3 11

Time:Auto, R5(1)

A[55:0]: [ME_c0_isrThreads]
Trace 4 [T: WR 12

G

VI start: OMN
INSTPO:ST
Instr
trace A[55:0]: [(MK_c0_aux1Thre:
6 || T: WR 14
WD Ind: ARC(0,1,2,3,4,5)
Data || Trace: Addr, Data T 15

trace

Figure 29: R7 ETM configuration to trace write accesses to the Thread Status/Control Arrays

5.7.2 Infineon AURIX MCDS (e.g. on TC277ED)

The AURIX MCDS can either be configured to observe the entire arrays or the (many) individual thread
state objects.

The entire arrays can observed via the DTU Magnitude comparators (dtu_ea_trig_[7:0]). This approach
only required 6 on-chip data trace channels (i.e. address comparators), but the disadvantage is that
also write access to array/structure elements are traced, which are not required for thread state
tracing. This means, unnecessary trace messages may lead to trace interface bandwidth issues (i.e.
trace overflow to reduced trace duration).

29 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

dtu_ea_trig_0 [ME_c0_taskThreads]
diu_ea_trig_1 [MK_c0_aux1Thread]
diu_ea_trig_2 [ME_c0_aux2Thread]
dtu_ea_trig_3 [ME_c0_isrThreads]
dtu_ea_trig_4 [MK_c0_idleThread]
diu_ea_trig_5 [MK_cO_errorHookThread]

Figure 30: AURIX MCDS DTU trigger configuration to trace the Thread Status/Control Arrays

Alternatively, the individual thread state can be observed by means of the MCDS Fine Grain
Comparator.
The figure below shows a sample Fine Grain Comparator configuration for a system with 5 task threads.

core_ea_fine 11 location(s)
ptu_trig_0 ALWAYS | X

Trigger
Locations
BOUMD: 70004000 z [((MK_cO_taskThreads)[0]).state]
RAMNGE: 00000300 [[((MK_c0_taskThreads)[1]).state]
GRAIM: 1Bytes [] [((MK_cO_taskThreads)[2]). state]
OFFSET: 0000 [] [((MK_c0O_taskThreads)[3]) state]
- (] [((MK_cO_taskThreads)[4]). state]

disabled [~ [((MK_c0_isrThreads)[0]).state]

[] [((MK._cO_isrThreads)[1]).state]

[] [(MK_c0_sux 1Thread).state]

[#] [(MK,_c0_aux2Thread).state]
disabled] [(MK_cO_idieThread). state]

[] [(ME_c0_errorHookThread). state]

Figure 31: Sample Fine Grain Comparator configuration for a system with 5 task threads

30 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

6 Inspectors

Inspectors are a winIDEA feature to analyze user-defined metrics in the winIDEA profiler timeline. It
allows the creation of new Profiler objects, so called Inspectors, which can change their state
depending on different events, such as state changes of other objects and timing parameters. This
section demonstrates how inspectors can be used to cover certain advanced timing-analysis use-cases
for the EB tresos AutoCore operating system.

6.1 Task Metric Analysis

Inspectors can be used to calculate the metrics defined in the AUTOSAR Timing Extensions
Specification. Predefined Inspectors exist for a certain subset of those metrics. The Inspectors are
defined in a generic way meaning the metrics are calculated for all threads in the trace. There is no
need to add a separate Inspector for each task and metric.

If you are interested in using those Inspectors, ask your iSYSTEM contact for the respective Inspectors
JSON file which can be imported into the winIDEA Profiler to make the metrics available.

G-¥Pe/R]4oAlaRAARQ
15241m|5600u5

1s 241ms 700us 1s 241ms 800us
PP P —

Data History

x|
= % Tasks

+1- [l NO_TASK_CORE_@

=~ I8l SchMDiagStateTask_28ms
W IDLE
I READY
I RUNNING
Wl NEW
v
¥ ActivateToActivate
% InitialPendingTime
¥ StartToStart
¥ SlackTime

Figure 32: Inspectors to calculate Task Metrics for the Thread SchMDiagStateTask_20ms

For a further analysis of the Inspector objects, you can utilize the Properties view of the winIDEA

Analyzer. To open the Properties view, select the desired object and press “Alt + Enter”.
= IE] Tasks S
+- I NO_TASK_CORE_@ |
-1~ W SchMDiagStateTask_28ms

B IDLE [|

I8l READY

I RUNNING

Il NEW

7 R

»

P Acti Zoon

7 Init Go To 4

7 Star Markers 4

51 .

v a.c Find D
+- I Rte_Tir
41 Rte_Eve Filters 4
£

j SchMC0l|
+- W CANSR4
Figure 33: Opening the “Properties” View for a Profiler Inspector Object

Properties... |- Alt + Enter |

For the task metric “StartToStart”, the relevant object statistic is “Period”. It measures the time
difference between the NEW-to-RUNNING state transitions of two consecutive instances of the same
thread.

31 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

Profiler Timeline

G-Y e B nlA 6 HRARRQ ol
s lsZ?Sm‘SEOOus Tsl73rn‘s700us 15273m‘5300us Wsl73rn‘5900us 152':4ms
Data Histary
x|
= I Tasks

+- 1 NO_TASK_CORE_®
Bl SchiMDiagStateTask_20ms
- IDLE
i~ Bl READY
i~ 1l RUNNING
B NEW
-7 ResponseTime
P ActivateToActivate
- InitialPendingTime
- IStartiostart!
¥ SlackTime |

Profiler Timeline

G-9 e B oA0HAARRQ Total

15 270ms
L

I

Data History

- Il SchMDiagStateTask_28ms 1

M IDLE I

-l READY

ol NEw

Il RUNNING 1

7 ResponseTime []
|
I

I

15 275ms 15 280ms 15 285ms 15 280ms
1 L I L L 1 1

1P ActivateToActivate
{7 InitialPendingTime

1P SlackTime

Figure 34: Inspector Object “StartToStart” for the Thread SchMDiagStateTask_20ms
Note: The Figure shows two profiler timelines of the same trace recording only using different zoom factors.

The Properties view provides the measurements for average, maximum and minimum period (i.e.
“StartToStart” time) along with the time (and link “->") to its occurrence.

Period Time between consecutive en

Average period | 16.000000 ms | Occurred at ime

Max. period | 16.126624 ms | |2825643808s ||

Mir, period | 15.875388 ms | |28417704325 ||

Figure 35: Period Properties for the “ActivateToActivate” Inspector Object

For the task metric “ResponseTime”, the relevant object statistic is “Net Time”. It measures the time
between the thread activation (IDLE-to-NEW transition) and the start of the thread (NEW-to-RUNNING
transition).

G- Pee| B4 oA MsRRAARQA

1s 241ms 600us 15 241ms 700us 1s 241ms 800us
| 1 | 1 | 1
Data History
x |
21t Tasks P E— I | — —
[~ 5l NO_TASK_CORE_® | N] |
- I SchMDiagStateTask_2ems
[I

----- ¥ ActivateToActivate
----- % InitialPendingTime
----- ¥ StartToStart

----- % SlackTime

Figure 36: Inspector Object “ResponseTime” for the Thread SchMDiagStateTask_20ms

The Properties view provides the measurements for average, maximum and minimum Net Time (i.e.
“ResponseTime”) along with the time (and link “->”) to its occurrence.

32 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

Met Time 32,235672ms
Average 170.559 us Occurred at time

Man: | 300.512us | |2041589608s || -=

Min | 151.576 us | |s37.53618ms || ->

Figure 37: Net Time Properties for the “ResponseTime” Inspector Object

33 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

7 BTF Export

The winlIDEA Profiler supports the export of traces into the BTF format. BTF is a CSV based trace format
that is supported by different timing tool vendors. Before the BTF export is usable the iSYSTEM profiler
XML file must be updated. The Profiler supports the export of tasks, ISR2s, Runnables and signals. For
tasks and threads the following BTF mapping reference must be added to the tasksTaTe object.

<BTFMappingType>Type BTFSTATE MAPPING</BTFMappingType>

The btf_mapping itself must then be added to the TypeEnum section of the XML file. For EB tresos
Safety OS the mapping in Error! Reference source not found. can be used. The mappingis required to t
ell winIDEA which thread state maps to which BTF task state transition.

The following steps must be executed to export a BTF trace file.

1. Load symbols * to make sure that the updated iSYSTEM Profiler XML is in use.
2. Record a trace with the necessary configuration to record threads and Runnables.
3. Select the export button in the Profiler timeline, choose BTF export, and export.
P er Timeline
g@v?v‘ﬁ|| Format | BTF v

This generates a BTF trace file which matches the profiler timeline as shown in Figure 38.

<TypeEnum>
<Name>Type_BTFSTATE_MAPPING</Name>
<Enum><Name>NEW</Name><Value>Active</Value></Enum>
<Enum><Name>READY</Name><Value>Ready</Value></Enum>
<Enum><Name>RUNNING</Name><Value>Running</Value></Enum>
<Enum><Name>IDLE</Name><Value>Terminated</Value></Enum>
</TypeEnum>

Listing 8: Mapping from EB tresos Safety OS thread states to BTF task state transitions.

The figure below shows a sample thread and Runnable profile and its corresponding BTF export.

= IE] Tasks P 1r I
+- 1Bl NO_TASK_CORE_@ | |
+- W SchMDiagStateTask_28ms
I Rte_Time_Task

Bl Rte_Event_Task I

B SchMComTask_1ms

1Bl CANSR4_ISR
I C8_QMOS_Thread
1 Ce_IDLE_Thread |

= IE] Runnables
J& SWC_ModifyEcho_ModifyEcho [|
J& SWC_CyclicCounter_SetCounter |

e S S B ey

128844384 ,CORE_@,97,T,CANSR4_ISR,97,start

128870360 ,STI_Rte_ Event_Task,47,T,Rte_Event Task,47,activate
128876392,CORE_@,97,T,CANSR4_ISR,97,terminate
12887708@,CO0RE_@,47,T,Rte_Event_Task,47,start
128878816,Rte_Event_Task,47,R,SWC_ModifyEcho ModifyEcho,47,start
128882144 ,Rte_Event_Task,47,R,SWC_ModifyEcho_ModifyEcho,47,suspend
128882144 ,Rte_Event_Task,47,R,SWC_CyclicCounter_SetCounter,47,start
128882556,Rte_Event_Task,47,R,SWC_CyclicCounter_SetCounter,47,terminate
128882556,Rte_Event_Task,47,R,SWC_ModifyEcho_ModifyEcho,47,resume
128883060 ,Rte_Event_Task,47,R,SWC_ModifyEcho ModifyEcho,47,terminate
128936896,C0RE_@,47,T,Rte_Event_Task,47,terminate

128937584 ,CORE_@,8,T,C0_IDLE_Thread,8,resume

Figure 38: The winIDEA Profiler allows a trace export to the BTF format. BTF is supported by various timing tool
vendors.

34 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

Note: The winIDEA Profiler also allows an export of Runnables. However, Runnable trace and profiling
is beyond the scope of this Application Note. Please refer to the dedicated Application Note about
Runnable trace with EB tresos AutoCore and EB tresos Safety.

35 of 36 Application Note
www.isystem.com

iSYSTEM EB tresos Safety OS 2.x Thread Profiling Application Note

8 Technical Support

8.1 Online Resources

Online Help #

winIDEA and testIDEA
online help

Technical Notes ¥

How-tos for winIDEA
functionalities with scripts

8.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

Knowledge Base #

Tips & tricks categorized by
issue type and architecture

Application Notes

How-to notes on advanced
use-cases

Tutorials ¥

From beginner to expert

Webinars ¥

Technical webinars about
ISYSTEM tools with use cases

iSYSTEM has made every effort to ensure the accuracy and reliability of the information provided in
this document at the time of publishing. Whilst iSYSTEM reserves the right to make changes to its
products and/or the specifications detailed herein, it does not make any representations or
commitments to update this document.

© iSYSTEM. All rights reserved.

36 of 36

www.isystem.com

Application Note

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

