

This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.
Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.
All trademarks are property of their respective owners.

iSYSTEM is an ISO 9001 certified company

AURIX Trace Overview and Use-Cases

Publish Date: 03/26/2019

AURIX Trace Overview and Use-Cases

1 of 51 Application Note

www.isystem.com

Table of Contents

1 Introduction .. 2

1.1 Overview of the AURIX On-Chip Trace Architecture .. 2
1.2 Trace Multiplexer (MUX) .. 3
1.3 Processor Observation Block (POB) ... 4
1.4 Bus Observation Block (BOB) ... 5
1.5 Multi-Core Cross Connect (MCX) ... 7
1.6 Emulation Memory .. 14
1.7 Debug Access Port (DAP) ... 14
1.8 AURORA Gigabit (AGBT) Interface ... 15
1.9 Usage of Initialization (.INI) Files .. 17

2 Trace Use-Cases .. 18

2.1 Multi-Core OS Profiling via DAP ... 19
2.2 Multi-Core OS & Program Trace via AGBT ... 32
2.3 Function Specific Program Trace ... 49

3 Technical support ... 51

3.1 Online resources .. 51
3.2 Contact ... 51

AURIX Trace Overview and Use-Cases

2 of 51 Application Note

www.isystem.com

1 Introduction

The application note provides an overview of the on-chip trace architecture and capabilities of the
Infineon AURIX micro controller family. Furthermore, this document discusses some common use-
cases of the AURIX trace infrastructure in combination with the iSYSTEM On-Chip Analyzers iC500,
iC5700 or iC6000.

1.1 Overview of the AURIX On-Chip Trace Architecture

The AURIX on-chip trace architecture is based on a central trace infrastructure, which can be connected
to various on-chip system resources like CPUs or buses by means of multiplexors (MUX). This trace
infrastructure is part of the so-called Multi-Core Debug System (MCDS) and is only available on special
Emulation Devices.
Figure 1 shows a simplified block diagram of a TC3x emulation device, including MCDS on-chip trace
infrastructure. The components within the grey box are only available on Emulation devices.

DAP/
JTAG

Shared Resource Interconnect (SRI) SPB

Bridge

Peripherals
(CAN, LIN,

FLASH

OCDS Trigger Switch (OTGS)

On-Chip
Debug

DAPE

EMEMAGBT

Back Bone Bus (BBB)

SRI Bridge

SRI

Trace MUXTrace MUX

Multi-Core Cross Connect (MCX) / Memory Controller (DMC)

POBx POBy POBz
BOB
SRI1

BOB
SRI2

BOB
SPB

CPU5
CPU4

CPU3
CPU2

CPU1

LMU

CPU0

DMA
OTGB
GTM

MCDS

OLDA

Figure 1: Simplified Block Diagram of a TC3x Emulation Device

The main components of the MCDS trace infrastructure are:

• Trace Multiplexer (MUX)
• Processor Observation Block (POB)
• Bus Observation Block (BOB)
• Multi-Core Cross Connect (MCX)
• Memory Controller (DMC)
• Emulation Memory (EMEM)
• Debug Access Port (DAP), optional DAPE on TC3x on Emulation Devices
• Optional AURORA Gigabit (AGBT) Interface

In the following chapters the individual MCDS components are describes in more details.

AURIX Trace Overview and Use-Cases

3 of 51 Application Note

www.isystem.com

1.2 Trace Multiplexer (MUX)

The MUX allows to connect the POBs to the various TriCore CPUs implemented on the chip. The TC2x
AURIX generation implements two POBs. However, some TC2x derivatives (TC2xxTx) include three
cores. Thus, in these cases only two out of three cores can be connected to a POB.

There are additional multiplexers attached to the Bus Observation Block (BOB) connected to the
System Resource Interconnect (SRI). These multiplexers allow to select specific SRI slaves to be
connected to the SRI BOB, e.g. LMU RAM or specific CPU Local RAMs (CPU0 PSPR, DSPR…).

Within the winIDEA trace configuration dialog, the Trace Multiplexers are represented by the
configuration section depicted in Figure 2 (menu: “Analyzer Configuration – Hardware – Configure… -
MCDS”).

Figure 2: winIDEA Analyzer - MCDS Trace Multiplexer Configuration (TC2x)

The Processor Observation Block X (POB X) can, for instance, be connected to either nothing, to CPU0,
CPU1 or CPU2 (see Figure 3).
Note: With the AURIX TC2x family only the two POBs X and Y are available, whereas the AURIX family
TC3x implements three POBs X, Y and Z.

Figure 3: winIDEA Analyzer – POB X Processor Selection Options (TC2x)

The Bus Observation Block connected to the SRI (BOB SRI 1/2) can be hooked up to various SRI slaves,
for instance the processor local RAMs or LMU RAM (see Figure 4).

AURIX Trace Overview and Use-Cases

4 of 51 Application Note

www.isystem.com

Figure 4: winIDEA Analyzer – POB SRI1 SRI Slave Selection Options (on TC277TF)

1.3 Processor Observation Block (POB)

Each of the POBs can be connected to one of the TriCore CPUs. The POB can monitor the instruction
execution and the data transactions performed by the CPU. Thus, a POB can generate trace messages
for program flow trace and for data access trace.
In addition, a POB offers various types of hardware comparators which allow to limit/focus trace to
particular areas of interest, e.g. limit data access trace of specific data address ranges or limit program
trace to specific program code areas (e.g. functions).

The POB hardware configuration options are represented in winIDEA by a configuration dialog as
shown in Figure 5.

Figure 5: Manual Trace Configuration Dialog for a Processor Observation Block (POB X)

A manual configuration process of a POB is basically done from right to left. The right most column lists
all available trace triggers of a POB. Such triggers are generated by hardware comparators
implemented in a POB. The comparators are typically configured to generate a trigger on an address
or data match, i.e. when the CPU executes an instruction located at a specific address, when the CPU
accesses (read/write) specific memory locations or when the CPU read/writes a specific data value
to/from memory.

AURIX Trace Overview and Use-Cases

5 of 51 Application Note

www.isystem.com

A trigger can then be mapped to one or multiple events. Events can also be formed by an logical AND
combination of multiple triggers (e.g. write access to a specific address AND write of a specific data
value).
An event can finally be connected to one or multiple actions. Such actions can for instance be the start
of program trace or the capture of an address and value of a data write access.
Figure 5 illustrates this concepts based on two examples.

Example 1 (blue):
Use-case:
Program trace starts once the CPU connected to POB X executes the first instruction of the function
BswM_MainFunction.
POB X Configuration:
The trigger is generated by using an address comparator of the POB Program Trace Unit (PTU). This
address comparator monitors the CPU Instruction Pointer (IP). As soon as the IP matches the address
value of BswM_MainFunction, the ptu_trig_0 is asserted.
The ptu_trig_0 is mapped to Event EVT0.
Event EVT0 is routed to the Action ptu_enable, thus Program Trace Unit (PTU) gets enabled (generates
program trace messages) when EVT0 is active.

Example 2 (red):
Use-Case:
Data trace records all write access to the global variable isystem_trace, performed be the CPU
connected to POB X.
POB X Configuration:
The trigger is generated by using an address comparator of the POB Data Trace Unit (DTU). This address
comparator monitors the addresses of data read/write transactions of the CPU connected to POB X.
When the data read/write address matches the address (range) of the global variable isystem_trace
the dtu_ea_trig_0 trigger is asserted.
The dtu_ea_trig_0 trigger is mapped t Event EVT10.
Event EVT10 is routed to the Actions dtu_wdat and dtu_wadr, thus the Data Trace Unit (DTU) of POB
X captures the data write data value (wdat) and the data write address (wadr) when EVT10 is active.

1.4 Bus Observation Block (BOB)

The MCDS implements two Bus Observation Blocks, BOB_SRI and BOB_SPB. The BOB_SPB is connected
to the SPB peripheral bus. The two sub-blocks of the BOB_SRI can be connected to two slaves of the
SRI bus.

The BOBs monitor the data transactions, performed by an bus master, over the SRI or SPB, respectively.
Thus, a BOB can generate trace messages for data access trace.
In addition, a BOB offers various types of hardware comparators which allow to limit/focus trace to
particular areas of interest, e.g. limit data access trace of specific data address ranges.

The BOB hardware configuration options are represented in winIDEA by a configuration dialog as
shown in Figure 6.

AURIX Trace Overview and Use-Cases

6 of 51 Application Note

www.isystem.com

Figure 6: Manual Trace Configuration Dialog for a SRI Bus Observation Block (BOB_SRI)

A manual configuration process of a BOB is basically done from right to left. The right most column
lists all available trace triggers of a BOB. Such triggers are generated by hardware comparators
implemented in a BOB. The comparators are typically configured to generate a trigger on an address
match, e.g. when a CPU or other SRI bus masters such as a DMA controller accesses (read/write) a
specific memory locations. There are also other types of comparators available which monitor data
values of SRI bus transactions or monitor which bus master performs the bus transaction.
A trigger can then be mapped to one or multiple events. Events can also be formed by and AND
combination of multiple triggers (e.g. write access to a specific address AND write of a specific bus
master).
An event can finally be connected to one or multiple actions. Such actions can for instance be the start
of data trace, i.e. capturing address and value of a data write transactions.
Figure 6 illustrates this concepts based on two examples.

Example 1 (blue):
Use-case:
Data write trace of the global variable isystem_trace (using for instrumented OS profiling). In this
example the variable isystem_trace resides in the LMU RAM, i.e. write transactions of all CPUs are
performed via the SRI bus and thus can be monitored by the BOB_SRI.
BOB_SRI Configuration:
The trigger is generated by using an address comparator of the BOB_SRI Data Trace Unit 1 (DTU 1).
This address comparator monitors the addresses of data read/write transactions via the SRI
(performed by any SRI bus master). When the data read/write address matches the address (range) of
the global variable isystem_trace the dtu1_ea_trig_0 trigger is asserted.
The dtu1_ea_trig_0 trigger is mapped to Event EVT0.
Event EVT0 is routed to the Actions dtu1_wdat and dtu1_wadr, thus the Data Trace Unit 1 (DTU 1) of
BOB_SRI captures the data write data value (wdat) and the data write address (wadr) when EVT0 is
active.

AURIX Trace Overview and Use-Cases

7 of 51 Application Note

www.isystem.com

Example 2 (red):
Use-Case:
Data trace records all write access to the global variable isystem_trace_runnable, performed by CPU1.
In this example the variable isystem_trace_runnable resides in the LMU RAM, i.e. write transactions
of all CPUs are performed via the SRI bus and thus can be monitored by the BOB_SRI.
The bus master ID of CPU1 is 0x2.
In terms of AUTOSAR profiling, this means that only Runnables executed by CPU1 are profiled. The
variable isystem_trace_runnable is used for instrumented Runnable trace of all CPUs.
BOB_SRI Configuration:
Two types of triggers are used in this example.
One trigger is generated by using an address comparator of the BOB_SRI Data Trace Unit 2 (DTU 2).
This address comparator monitors the addresses of data read/write transactions via the SRI
(performed by any SRI bus master). When the data read/write address matches the address (range) of
the global variable isystem_trace_runnable the dtu2_ea_trig_0 trigger is asserted.
The second trigger is generated by using a special comparator type which can monitor which SRI bus
master performs the SRI bus transaction (a so called “masked magnitude comparator”). Whenever the
SRI bus transactions is performed by the bus master with ID=0x2 (i.e. CPU1) the dtu2_acc_trig_0 trigger
is asserted.
Both triggers, dtu2_ea_trig_0 and dtu2_acc_trig0 are mapped to Event EVT15. The Event is asserted
only in case both triggers are active, i.e. they form an AND combination. Thus, EVT15 is only asserted
when CPU1 performs the data transaction to isystem_trace_runnable.
Event EVT15 is routed to the Actions dtu2_wdat and dtu2_wadr, thus the Data Trace Unit 2 (DTU 2) of
POB_SRI captures the data write data value (wdat) and the data write address (wadr) when EVT15 is
active.

1.5 Multi-Core Cross Connect (MCX)

The functionality of the MCX can be divided into three categories:
1. Time Stamp Message Generation
2. Message Storage Control
3. Event Counters
4. Trigger Feedback to Observation Blocks (POB/BOB)

1.5.1 Time Stamp Message Generation

In order to understand the time stamping concepts of the MCDS it is essential to understand that the
trace messages delivered by the POBs and BOBs do not contain any timing information, i.e. there is no
such thing as a time stamp within in each trace message.
Timing information is added by the MCX by adding dedicated time stamp messages.
Another important aspect is, that the whole message storage and time stamping approach is based on
the underlying concept that trace data can be stored on-chip (in the Emulation Memory, EMEM) and
read out by a trace tool at some later stage.

There are several time stamping concepts available, but typically either one of the following two
concepts is used.
For both concepts the time stamps are derived from the counter structure depicted in Figure 7.

AURIX Trace Overview and Use-Cases

8 of 51 Application Note

www.isystem.com

Ref. Clock Counter
(TSUREFCNT)

MCDS Clock
(typ. CPU Clock / 2)

32-bit Emulation Counter

(TSUEMUCNT)

Reference Clock
(typ. Main PLL Clock / 24)

TSU_TC_TRIG

31 7 0
8-bit TICK Timestamp

32-bit REL Timestamp
(TSU_REL)

Pre-Scaler
(TSUPRSCL)

Period

Timestamp
32-bit ABS Timestamp

(TSU_ABS)

Figure 7: Time Stamp Counter Structure of the MCX

Time Stamping Concept 1 - Ticks:
The basic idea behind tick time stamps is an incremental timing information between two subsequent
trace message, by means of an 8-bit wide “Tick” message. A “Tick” message represents one MCDS clock
cycle. When two subsequence trace message are, for instance, generated four MCDS clock cycles apart
from each other, the “space” in between these trace messages is filled with a “ four Ticks” messages.
If these is no new trace message for 255 MCDS clock cycles, then a so called “Multick” is automatically
generated. When a trace tools reads out the on-chip trace buffer, it can incrementally derive the exact
relative time for each trace message by adding the number of MCDS clock cycles between the trace
messages as defined by the number of “Tick” messages
“Tick” based timestamp can be enabled via the Hardware, MCDS and MCX configuration dialogs as
shown in Figure 8.

Hardware

Manual Trigger/recorder configuration – Configure - MCDS

Manual Trigger/recorder configuration – Configure - MCX

Figure 8: Hardware, MCDS and MCX Configuration Dialogs enabling “Tick” based Time Stamping

This “Tick” based time stamping is the most accurate trace method (timing resolution is MCDS clock,
which is typically CPU clock divided by 2), but may consume more trace buffer compared to the
TSU_REL based concept described below.
The resolution of a Tick cannot be configured, i.e. it is fixed to one MCDS clock cycle.

AURIX Trace Overview and Use-Cases

9 of 51 Application Note

www.isystem.com

The Tick time stamp based trace timing reconstruction concept is also depicted in Figure 9.

time

time

EMEM

Trace & Time Stamp Messages received over Time

Recontructed Time of Trace Messages (in Trace Analyzer)

Tick Time Stamp Message Program/Data Trace Message

6 x Tick = 6 x MCDS Clock 3 x Tick = 3 x MCDS Clock

Figure 9: Trace Timing Reconstruction using Tick Time Stamps (no Timer Interpolation)

Note: Tick based time stamping does not support a time correlation (synchronization) of the AURIX
trace to other trace sources, such as another processor or an iC5700 Add-on module (CAN/LIN or
ADIO).

AURIX Trace Overview and Use-Cases

10 of 51 Application Note

www.isystem.com

Time Stamping Concept 2 - TSU_REL:
When using TSU_REL based time stamping, full 32-bit time stamps (contents of the TSUEMUCNT
counter) are inserted into the trace stream/storage upon specific triggers. Such triggers can either be
a periodic expiration of the TSUPRSCL prescaler (TSU_TC_TRIG) or other triggers generated by a POB
or BOB and forwarded to the MCX.
There are two typical use-cases.

Use-case 1: Periodic TSU_REL generation
In this case the pre-scaler TSUPRSCL is used to generate a period TSU_TC_TRIG trigger. This trigger can
be mapped to a MCX event and the event finally causes the action of generating a TSU_REL message
(Relative Time Stamp Sync message). All trace massages which occur in between two consecutive
TSU_REL messages are interpolated (equally distributed) between the TSU_REL messages by the trace
tool. Therefore, the trace timing accuracy depends on the TSU_TC_TRIG frequency. The higher the
frequency the higher the timing accuracy. The highest accuracy is achieved by setting the TSUPRSCL
pre-scaler value to 1.
If the TSUPRSCL value is 1 and CPU clock (also Main PLL clock) is for instance 200MHz, this means that
a TSU_REL time stamp message is generated after every 240ns. For a TSUPRSCL value of 4, this would
mean a TSU_REL message every 600ns.
Figure 10 show the corresponding MCDS and MCX configuration dialog settings for this use-case.

Hardware

Manual Trigger/recorder configuration – Configure - MCDS

Manual Trigger/recorder configuration – Configure - MCX

Figure 10: Hardware, MCDS and MCX Configuration Dialogs enabling “TSUREL” based Time Stamping

The periodic TSU_REL time stamp based trace timing reconstruction concept is also depicted in Figure
11.

AURIX Trace Overview and Use-Cases

11 of 51 Application Note

www.isystem.com

time

time
EMEM

Trace & Time Stamp Messages received over Time

Recontructed Time of Trace Messages (in Trace Analyzer)

Timer Interpolation of Trace Messages between
TSU_REL Time Stamp Messges

TSUPRSCL TSUPRSCL

TSU_REL Time Stamp Message Program/Data Trace Message

Figure 11: Trace Timing Reconstruction using TSU_REL Stamps and Timer Interpolation

Use-case 2: TSU_REL generation upon specific triggers
This kind of time stamp generation is not recommended.

1.5.2 Message Storage Control (in EMEM)

Trace data can either be stored in the so-called Emulation Memory (EMEM) or it is streamed out via
the AGBT interface.
The structure of the EMEM (for a TC2x emulation device) is depicted in Figure 12.

TC
M

 T
ile

 0

TC
M

 T
ile

 1

TC
M

 T
ile

 2

TC
M

 T
ile

 1
5

XCM

XTM0

XTM1

Trace/Calibration Memory (TCM)Extended Calibration
Memory (XCM)

Extended Trace
Memory (XTM)

LMU
Interface

MCDS
Interface

BBB
Interface

SRI (CPU)
MCDS
(Trace) JTAG/DAP

AGBT
Interface

AGBT
Figure 12: Simplified Structure of the Emulation Memory (EMEM) of TC2x

AURIX Trace Overview and Use-Cases

12 of 51 Application Note

www.isystem.com

The EMEM consists of three parts, the Extended Calibration Memory (XCM), the Trace/Calibration
Memory (XCM) and the Extended Trace Memory (XTM).

The XCM is used by the calibration software of the application (i.e. CPU). It cannot be used for trace
(MCDS).

The TCM can either be used by the software (CPU) or be the MCDS. The TCM is separated into so called
tiles. These tiles can be assigned to either trace or calibration. All the tiles assigned to trace form the
on-chip trace buffer. The MCX manages how the trace data is written into the TCM trace buffer. The
storage operation in the buffer is basically performed in two phases, the so called “Pre-Trigger Phase”
and the “Post-Trigger Phase”.

Pre-Trigger Phase:
The storage always starts in Pre-Trigger phase. In this phase, the MCX uses a user-defined portion of
the available trace buffer (i.e. tiles assigned to trace) as a circular buffer. The size of this circular buffer
is defined by the Trigger Position. It can either be:

- Begin => No circular buffer available in Pre-Trigger phase.
- Center => Half of the trace buffer is used as circular buffer available in Pre-Trigger phase.
- End => The entire trace buffer is used as circular buffer available in Pre-Trigger phase.

Upon the occurrence of a user-defined Trigger Event, the storage operation switches into the Post-
Trigger phase. This Trigger Event is either generated by the MCX itself or can originate from a Trigger-
Event-Action generated by a POB or BOB.
Typical Trigger Events are:

- A CPU executes an instruction at a specific address location, such as an entry into a function.
- A CPU performs a memory write access to a specific memory address location using a specific

data value. Such an event could for instance be generated by the OS signaling that a specific
OS task is running.

Post-Trigger Phase:
In this phase the remaining portion of the trace buffer is filled with trace messages which are generated
after the occurrence of the Trigger Event (trace_done). Once the allocated trace buffer is full, trace is
automatically stopped (the CPU operation is not influenced).

The concept is also depicted in Figure 13.

Ti
le

0

Ti
le

1

Ti
le

2

B
EG

IN

Ti
le

1
3

Ti
le

1
4

Ti
le

1
5

EN
D

Ti
le

7
C

EN
TE

R

PRE-TRIGGER POST-TRIGGER

TRIGGER
Position
Options

PRE/POST
Allocation for
Trigger = Center

Figure 13: EMEM TCM Trigger Concept

Figure 14 shows the EMEM TCM Trigger Position configuration dialog in the MCDS tab.

AURIX Trace Overview and Use-Cases

13 of 51 Application Note

www.isystem.com

Figure 14: EMEM TCM Trigger Position Dialog

Figure 15 shows the EMEM TCM Trigger Event configuration dialog in the MCX tab.

Figure 15: Sample trace_done Trigger Event Configuration (switch from Pre- to Post-Trigger mode upon
occurrence of MCX EVT0, imported from POB X).

1.5.3 Event Counters

The MCX implements a set of event counters. These counters can be incremented, decremented and
cleared upon input events, selectable from a pool of events. Such events may be “core instruction
executed”, “cache hit” or events imported to other MCDS components such as POBs or BOBs.
The event counter can either be used a trigger course of MCX events or may be may be output via the
Watchpoint Trace Unit (WTU).

AURIX Trace Overview and Use-Cases

14 of 51 Application Note

www.isystem.com

1.5.4 Trigger Feedback to Observation Blocks

Events of the MCX may be exported and routed to observation blocks such as POBs or BOBs, where
they can be used as triggers.
For example, program trace of a POBs could be enabled when an event counter of the MCX exceeds a
certain threshold.

1.6 Emulation Memory

The structure of the Emulation Memory (EMEM) is shown in Figure 12.
The TCM tiles can be used for the following trace use-cases:

1.6.1 Trace into EMEM until full, Read-out via DAP or JTAG Interface

This use-case is basically described in “Message Storage Control” chapter above.

1.6.2 Trace Streaming via DAP Interface using EMEM Tiles for interim Buffering (“Upload while

Sampling”)

In this case, the available EMEM tiles are managed by the iSYSTEM tool in a way that allows a
permanent streaming of trace data. This so-called “Upload while Sampling” (UWS) mode allows a
virtually unlimited trace recording, assuming that the trace data generation rate (be the MCDS) is less
or equal the data throughput via the DAP interface.
UWS is operational with a minimum of 2 EMEM tiles. However, it is recommended to allocate a
minimum of 3 EMEM tiles to trace when using UWS.

1.6.3 Trace Streaming via AGBT using a EMEM Tile as FIFO

In this case a TCM tile is used as a FIFO within the AGBT trace data path. Please note, the only on a few
AURIX derivatives TCM tiles are used as AGBT FIFO. Typically, the AGBT uses the two XTM files as FIFO.

1.7 Debug Access Port (DAP)

The DAP is an Infineon proprietary interface. It can be used as either a 2-pin (DAP0, DAP1) or 3-pin
(DAP0, DAP1, DAP2) bi-directional interface to communicate debug and trace information between
the AURIX device and the tool. The DAP pins are multiplexed with the standard JTAG pins and are
available on every AURIX device (also Production Devices).
Emulation devices of the TC3x family also offer a second DAP interface, the so-called DAPE.

The DAP interface can operate at clock frequencies of up to 160MHz. The maximum applicable
frequency depends on the hardware setup, i.e. target board layout (e.g. distance between device and
DAP connected on the ECU).
The iSYSTEM iC5700 allows to either access the DAP interface directly via a DAP cable adaptor or via a
dedicated AURIX DAP Active Probe.

AURIX Trace Overview and Use-Cases

15 of 51 Application Note

www.isystem.com

The operation mode and clock frequency can be configured in winIDEA with the “Hardware – CPU

Options… - SoC”.
Figure 16: DAP Configuration Options in the winIDEA Dialog “CPU Setup – SoC”

1.8 AURORA Gigabit (AGBT) Interface

The AGBT interface is a very-high bandwidth trace streaming interface. It uses differential signaling in
order to achieve transfer bit rates of several Gbit/s (Gbps). On AURIX devices the AGBT bandwidth is
typically 2.5 Gbps. This makes the AGBT interface suitable to perform unconditional program trace and
OS trace on multiple CPUs simultaneously.
However, as the interface runs at frequencies in the GHz range, high-frequency design rules need to
be applied when using the AGBT interface on the target hardware.

The AURIX AGBT interface complies with the AURORA trace interface specification of the NEXUS
5001TM Forum Standard (http://nexus5001.org/)

The operation mode and clock frequency can be configured in winIDEA with the “Hardware – CPU
Options… - Aurora”.

AURIX Trace Overview and Use-Cases

16 of 51 Application Note

www.isystem.com

Figure 17: AURORA AGBT Configuration Options in the winIDEA Dialog “CPU Setup – Aurora”

AURIX Trace Overview and Use-Cases

17 of 51 Application Note

www.isystem.com

1.9 Usage of Initialization (.INI) Files

The Initialization file (.INI) is used to configure the following on-chip features:

• Multi-Core Synchronization

• Peripheral Freeze

• AGBT Trigger Output

iSYSTEM provides a INI file for each AURIX family, which covers the typical use-cases. However, a user
may need to modify the INI file according to the particular use-case.

Listing 1 shows a typical INI file.

01 //TL1: For peripheral Suspend control

02 //TL2: for CPU HALT indication

03

04 // MULTI CORE SYNCHRONIZATION

05 // break_out outputs from all cores are connected to TL1

06 // capture and hold on TL1 is enabled

07 // all cores are suspend targets

08 A CBS_TLCHE L 0x00000002 // TL1 capture and hold enabled

09 A CBS_TL1ST L 0x30000007 // all CPUs are suspended target

10 // DMA is suspend target

11 // HSSL is suspend target

12

13 A CBS_TRC0 L 0x00000102 // BT1 - CPU0 is trigger source

14 // HALT connected to TL2

15 //A CBS_TRC1 L 0x00000100 // BT1 - CPU1 is trigger source

16 //A CBS_TRC2 L 0x00000100 // BT1 - CPU2 is trigger source

17 A CBS_TLC L 0x00000030 // TL1 forced to active

18 A CBS_TLC L 0x00000000 // TL1 force removed

19

20 // TRACE TRIGGER OUTPUT

21 // MCDS trig_out_0 is connected to TL4

22 // output is stretched to min 4PBs clocks

23 // TL4 line is connected to output port 4 (P32.6)

24 A CBS_TOPR L 0x00040000 // TL4 connected to trig out pin 4

25 // (port P32.6)

26 A CBS_TRMT L 0x00000004 // MCDS trigger out 0 connected to TL4

27 A CBS_TOPPS L 0x00000200 // trigger output pulse stretched to 4PBs

28 A P32_PDR0 L 0x30333333 // port P32.6 - speed grade 4 (max)

29

30 // DISABLE TRACE TIME WHEN CPU IS STOPPED

31 // Master CPU (CPU0) connects HALT output to TL2

32 // MCDS break_in connection

33 A CBS_TRMC L 0x00200000 // MCDS Break in is connected to TL2

34

35 //-----------------------

36 //STM suspend control

37 A STM0_OCS L 0x12000000

38 A STM1_OCS L 0x12000000

39 A STM2_OCS L 0x12000000

40 //-----------------------

41 …

Listing 1: Sample AURIX Initialization (INI) File

AURIX Trace Overview and Use-Cases

18 of 51 Application Note

www.isystem.com

2 Trace Use-Cases

This section discusses some common use-cases.

Use-cases:

• Multi-Core OS Profiling via DAP

• Multi-Core OS and Function Profiling via AGBT

AURIX Trace Overview and Use-Cases

19 of 51 Application Note

www.isystem.com

2.1 Multi-Core OS Profiling via DAP

This section demonstrates the profiling of an AUTOSAR OS using all three cores of a TC27x device. The
objective is to perform a timing analysis of the running tasks and running ISR2s of all three cores. The
tasks and ISR2 shall be displayed in the same winIDEA Analyzer window. The trace recording should
last several seconds and shall be performed via the DAP interface of the AURIX device.

2.1.1 What needs to be traced?

The Information Section of the corresponding ORTI file reveals that the OS data object
Os_Cfg_Trace_OsCore_CoreX_Dyn is used for running Task (“CurrentTask”) and running ISR2
(“CurrentIsr”) trace.

/**

 * Information Section

 **/

OS TC27x {

 vs_SMP_NUMCPU = "3";

 /* OS information for AUTOSAR core OsCore_Core0 */

 vs_COREID[0] = "OsCfg_Core_OsCore_Core0.Core.Id";

 RUNNINGTASK[0] = "OsCfg_Trace_OsCore_Core0_Dyn.CurrentTask";

 RUNNINGISR2[0] = "OsCfg_Trace_OsCore_Core0_Dyn.CurrentIsr";

 /* OS information for AUTOSAR core OsCore_Core1 */

 vs_COREID[1] = "OsCfg_Core_OsCore_Core1.Core.Id";

 RUNNINGTASK[1] = "OsCfg_Trace_OsCore_Core1_Dyn.CurrentTask";

 RUNNINGISR2[1] = "OsCfg_Trace_OsCore_Core1_Dyn.CurrentIsr";

 /* OS information for AUTOSAR core OsCore_Core2 */

 vs_COREID[2] = "OsCfg_Core_OsCore_Core2.Core.Id";

 RUNNINGTASK[2] = "OsCfg_Trace_OsCore_Core2_Dyn.CurrentTask";

 RUNNINGISR2[2] = "OsCfg_Trace_OsCore_Core2_Dyn.CurrentIsr";

}; /* OS */

Listing 2: Sample ORTI File of the AUTOSAR Demo Application

Displaying the Os_Cfg_Trace_OsCore_CoreX_Dyn objects in the winIDEA Watch window (see Figure
18) reveals that all of them are located in the local memory of CPU 2 (please refer to the memory map
description of the Infineon AURIX user manual).

Figure 18: winIDEA Watch Window with OS Data Objects used for Tracing RunningTask and RunningISR2

This means that only CPU2 has local access to these objects. The other cores (CPU0 and CPU1) need to
access their associated OS data object via the SRI. These access paths are relevant for determining
which on-chip trace concept is most suitable for this setup.

AURIX Trace Overview and Use-Cases

20 of 51 Application Note

www.isystem.com

As CPU2 accesses its OS object locally, only a POB connected to CPU2 can monitor these data
transactions. The data transactions to the OS objects of all other CPUs can be monitored by a BOB_SRI
connected to the SRI slave interface of DSPR of CPU2 (see the corresponding BOB_SRI MUX
configuration in Figure 25).
Figure 19 depicts the AURIX internal data transaction paths of the individual CPUs to the OS data
objects located in DSPR2 (red). It is also shows where the POB and BOB needs to be connected (via
MUX) in order to monitor (i.e. trace) these transactions.

POB CPU0DSPR0 CPU1DSPR1

CPU2
DSPR2

Program
Data

FLASH

LMU
RAM

OS Data
Objects

POB

SRI

BOB

Figure 19: AURIX-internal Data Access Paths to the OS Data Objects and POB/BOB Observability

Please note, the memory allocation and the corresponding MCDS trace setup described above
applies to this particular sample project. The relevant OS data objects in your AUTOSAR project may
be located in different memory locations, such as LMU or DSPR of CPU0.

AURIX Trace Overview and Use-Cases

21 of 51 Application Note

www.isystem.com

2.1.2 winIDEA Configuration

DAP Active Probe Detection
After the communication to the iC570 has been established, it is recommended to perform a detection
of the connected Active Probe. This can be done via the menu “Hardware – Emulation Options –
Probe”. Select Active Probe and then click the “Refresh” button. Select the detected DAP Active Probe.
In the Active Probe detection shown in Figure 20, the Active Probe has been given a alias “DAP_SLV”.

Figure 20: iC5700 Active Probe Detection.

DAP Width & Frequency Configuration
As the DAP interface is not only used for debug control communication but also for the transport of
trace data (Upload-While-Sampling), it is essential to set the DAP to maximum performance, i.e. if
possible use “DAP Wide” mode and apply maximum possible clock frequency.
The maximum supported DAP clock frequency supported by both the AURIX device and also the DAP
Active Probe is 160MHz. However, the individual target board layout may not allow a DAP operation
at 160MHz. Thus, the maximum applicable DAP clock be evaluated individually on each target setup.

In addition, for maximum Upload-While-Sampling performance, a minimum of 3 TCM tiles should be
available as Trace Buffer.

Figure 21: DAP Interface Configuration

Trace Port Selection
If the DAP interface is used for debug and trace data transfer, the trace data is still buffered in the on-
chip trace buffer, i.e. EMEM. Therefore, the Analyzer Operation mode “On-Chip” needs to be selected.
The Cycle duration does not represent the CPU clock cycle duration, but the MCDS clock cycle duration
(The MCSD clock is typically either equal or half the CPU clock.).

AURIX Trace Overview and Use-Cases

22 of 51 Application Note

www.isystem.com

Figure 22: Trace Port Selection for Trace via DAP (On-Chip)

2.1.3 winIDEA Trace Analyzer Configuration

It is recommended to create a new trace configuration for each trace use-case.

Figure 23: Creating a new winIDEA Analyzer Trace Configuration

A trace configuration for OS task and ISR2 profiling of three cores, could, for instance, look like depicted
in Figure 24. The configuration should have a descriptive name, enabled Profiler Analysis and enabled
Manual Hardware Trigger Configuration.

Figure 24: Sample new Trace Configuration

AURIX Trace Overview and Use-Cases

23 of 51 Application Note

www.isystem.com

Figure 25 shows the MCDS configuration corresponding to the POB/BOB connectivity described in
Figure 19.

Figure 25: POB/BOB MUX and Timestamping Configuration

Trigger:
The “Trigger Position” setting is not relevant in this case, as we will use DAP Upload-While-Sampling.

MUX:
The BOB_SRI and POB X and Y MUXes are set in the following way:

• BOB_SRI1: CPU2 (PSPR, DSPR…), i.e. connected to the SRI interface of the CPU2 local memory.

• BOB_SRI2: CPU2 (PSPR, DSPR…), i.e. connected to the SRI interface of the CPU2 local memory.

• POB X: CPU2, i.e. connected to CPU2

Time stamps:
TICK time stamping is used (“Assume source to be tick”).
In this case, the value entered for TSUPRSCL and also the “Reference clock” selection is irrelevant.

Options:
No additional options need to be enabled.

AURIX Trace Overview and Use-Cases

24 of 51 Application Note

www.isystem.com

Figure 26 shows the required POB X configuration (POB X is connected to CPU2).

Figure 26: POB_X Configuration to trace Data Write Access of Core 2 to the OS Objects of Core 2

Trigger:

• Two magnitude comparators (address comparators) generate a trigger when CPU2 accesses
the Running Task and Running ISR2 signaling variables of the OS.

Configuration of dtu_ea_trig_2 (Running Task):

Configuration of dtu_ea_trig_2 (Running ISR2):

Events:

• Trigger dtu_ea_trig_2 is mapped to EVT10.

• Trigger dtu_ea_trig_3 is mapped to EVT11.

Actions:

AURIX Trace Overview and Use-Cases

25 of 51 Application Note

www.isystem.com

• EVT10 or EVT11 both cause capturing the Write Access Data (dcu_wdat) and Write Access
Address (dcu_waddr).

Figure 27 shows the required POB Y configuration (POB Y is not connected to any CPU).

Figure 27: POB_Y Configuration, not used in this use-case

AURIX Trace Overview and Use-Cases

26 of 51 Application Note

www.isystem.com

Figure 28 shows the required BOB_SRI configuration. In this configuration the Data Trace Unit 1 (DTU1)
of the BOB_SRI is used to trace the CurrentTask and CurrentIsr object of CPU0, DTU2 is used to trace
the CurrentTask and CurrentIsr object of CPU1.

Figure 28: BOB_SRI Configuration to trace Data Write Accessed of Cores 0 and 1 to the corresponding OS
Objects

Trigger:

• Two magnitude comparators (address comparators) generate a trigger when CPU0/1 access
the corresponding CurrentTask (Running Task) and CurrentIsr (RunningISR2) variables of the
OS.

Configuration of dtu1_ea_trig_0 (Running Task):

Configuration of dtu1_ea_trig_1 (Running ISR2):

DTU2 is configured accordingly.

AURIX Trace Overview and Use-Cases

27 of 51 Application Note

www.isystem.com

Events:

• Trigger dtu1_ea_trig_0 is mapped to EVT0.

• Trigger dtu1_ea_trig_0 is mapped to EVT1.

• Trigger dtu2_ea_trig_0 is mapped to EVT14.

• Trigger dtu2_ea_trig_0 is mapped to EVT15.

Actions:

• EVT0 or EVT1 both cause capturing (by DTU1) the Write Access Data (dtu1_wdat) and Write
Access Address (dtu1_waddr).

• EVT14 or EVT15 both cause capturing (by DTU2) the Write Access Data (dtu2_wdat) and Write
Access Address (dtu2_waddr).

AURIX Trace Overview and Use-Cases

28 of 51 Application Note

www.isystem.com

Figure 29 shows the MCX configuration required to use TICK time stamping.

Figure 29: MCX Configuration to generate TICKS for Time Stamping and Upload-While-Sampling

As a final stage of the trace configuration the Recorder, i.e. iC5700, properties need to be set. In this
use-case we immediately start trace recording and use the Upload-While-Sampling feature to stream
trace messages via the DAP interface.
Figure 30 depicts the corresponding Recorder settings.

Figure 30: Analyzer Configuration for DAP Upload-While-Sampling (UWS) and immediate Recording

AURIX Trace Overview and Use-Cases

29 of 51 Application Note

www.isystem.com

2.1.4 winIDEA Profiler Configuration

In order to make winIDEA and the winIDEA Profiler aware of the AUTOSAR OS running on the target
the so-called ORTI file, generated by the AUTOSAR generation tool, needs to be imported into winIDEA.
This is done via the menu “Debug – Operating System…”.

When importing the AUTOSAR ORTI file via the “New…” button, the OS type “OSEK AUTOSAR” has to
be selected (see Figure 31). Afterwards you can give the OS awareness some descriptive name. In our
example shown in Figure 32, the ORTI file has the name “Os_Trace.ORT”. As the AUTOSAR OS used in
this example is a Vector Microsar OS, we name the OS-awareness the name “Microsar ORTI”.

Figure 31: Creating of a new OSEK AUTOSAR OS Awareness

Figure 32: Selection of the AUTOSAR ORTI File (in this example the file “Os_Trace.ORT”)

A “Download” or “Symbol Download” operation also reads in the ORTI file.
Subsequently, the winIDEA Profiler can be configured to utilize the information given by the ORTI file.
As shown in Figure 33, the profiling of “OS objects” needs to be enabled.

AURIX Trace Overview and Use-Cases

30 of 51 Application Note

www.isystem.com

Figure 33: “OS Setup…” Configuration of the Analyzer – Profiler Dialog

Pushing the “OS Setup…” button opens the “RTOS Profiler Options” dialog. The name of the Operating
Systems corresponds to the name that was given via the “Debug – Operating System…” dialog, when
selecting the ORTI file.
All OS objects described by the ORTI are listed under “Objects to profile”. One or multiple objects can
be selected for profiling. The sub-window “Object Info:” provides more detailed info of a selected
object, such as the Name given in the ORTI file and the type of signaling.
In the example shown in Figure 33 the ORTI object RUNNINGTASK[0], i.e. the Running Task on CPU0,
is signaled via the global variable Os_Cfg_Trace_OsCore0_Dyn.CurrentTask. As described in the section
2.1.2 these are the global variables which need to be observed via Data Trace.

AURIX Trace Overview and Use-Cases

31 of 51 Application Note

www.isystem.com

2.1.5 winIDEA Profiler View

Figure 34 shows the resulting profiler timeline.

Figure 34: Sample winIDEA Profiler Timeline, showing Running Tasks and Running ISR2s of all three Cores of a
Multi-Core AUTOSAR OS running on an Infineon AURIX TC277

AURIX Trace Overview and Use-Cases

32 of 51 Application Note

www.isystem.com

2.2 Multi-Core OS & Program Trace via AGBT

This section demonstrates the code/function profiling of an AUTOSAR OS based multi-core application.
How many cores can be profiled in parallel depends on the number of available POBs, i.e. either two
or three cores. The objective is to perform timing analysis of the complete software running on the
cores. The OS running tasks and running ISR2s are also traced. This is needed when nested function
profiling is done on systems using a pre-emptive operation system (such as the AUTOSAR OS).
Nested function profiling is provided when the winIDEA Profiler operates in either “Range” or
“Entry/Exit” mode.
The AGBT interface is designed to provide sufficient trace bandwidth for such a use-case (see also
section 1.8)

2.2.1 What needs to be traced?

This use-case requires tracing of the program flow as well as the OS task and ISR2 context. Program
flow trace can only be done by means of Processor Observation Blocks (POB).

In the sample use-case discussed in the following section, we assume that the multi-core AUTOSAR
application is running on three TriCore cores of a TC277TF device. On this device the MCDS offers two
POBs, i.e. only on two out of three cores the program flow can be traced. In our particular use-case
here we decide to focus on CPU0 and CPU2, thus we trace the program flow of CPU0 and CPU2 via
POBs. The data accesses of CPU2 to the OS objects are also traced by the connected POB. The data
accesses of the other two cores (CPU0 and CPU1 can be traced by means of one BOB, by connecting it
to the DSPR2 slave of the SRI. Thus, overall we can trace:

- The program flow of CPU0 and CPU2
- The OS tasks and ISR2 of all three cores

Figure 35 depicts the overall setup.

POB CPU0DSPR0 CPU1DSPR1

CPU2
DSPR2

Program
Data

FLASH

LMU
RAM

POB

OS Data
Objects

POB

SRI

BOB

Figure 35: Sample AURIX-internal Data Access Paths & POB/BOB Connectivity for Multi-Core Program Flow and
OS Trace

AURIX Trace Overview and Use-Cases

33 of 51 Application Note

www.isystem.com

2.2.2 winIDEA Configuration

Infineon AGBT Active Probe Detection
After the communication to the iC570 has been established, it is recommended to perform a detection
of the connected Active Probe. This can be done via the menu “Hardware – Emulation Options –
Probe”. Select Active Probe and then click the “Refresh” button. Select the detected AGBT Active
Probe.

Figure 36: AGBT Active Probe Detection

DAP Width & Frequency Configuration / AGBT Flush & Buffer Configuration
Although an AGBT Active Probe is used, the bi-directional debug communication is still performed via
the DAP interface. Therefore, also the DAP interface needs to be configured. DAP mode should be set
to “DAP Wide”, the DAP clock speed is not that critical in this case as the high-bandwidth trace data
streaming is routed through the AGBT interface.
These settings can be configured via the “Hardware – CPU Options… - SoC” dialog as shown in Figure
37.

Figure 37: DAP Mode/Frequency Selection & AGBT Flush/Buffer Selection

The option “Flush trace when AGBT is stopped should be enabled. However, in case an AGBT overflow
occurs at the end of the trace recording, this option should be disabled. Potentially , the flush operation

AURIX Trace Overview and Use-Cases

34 of 51 Application Note

www.isystem.com

which is performed when trace is stopped may actually cause an AGBT overflow. Thus, disabling the
AGBT buffer flushing may eliminate the overflow.

Which type of Trace Buffer can be used depends on the individual device. In general, either EMEM
TCM tiles or the EMEM XTM can be used as AGBT FIFO buffer.

Trace Port Selection
As the AGBT interface is used here, the Analyzer must run in Operation mode “AURORA Trace Port”.

Figure 38: Analyzer Trace Port Selection for AGBT

The Cycle duration does not directly represent the CPU clock cycle duration, but the MCDS clock cycle
duration. The CPU and also the MCDS clock can be obtained via the TriCore Plugin, which can be
opened via the menu “View – TriCore”.
Push the “Refresh” button while the CPU is running. The plugin will display the current clock settings
for CPU and MCDS in Hz. In the sample shown in Figure 39, the MCDS clock is equal to the CPU clock,
running at 80MHz.
Especially for higher CPU clock frequencies, the MCDS clock is typically half the CPU clock.

Figure 39: Sample TriCore Plugin View (MCDS and CPU running at 80MHz, i.e. Cycle Duration is 12.5ns)

In addition, the AGBT interface to be configured. The parameters are:

- Number of lanes: How many AURORA Lines are used for the AGBT interface. Most AURIX
devices support only 1 AURORA lane.

- Baudrate: Most AURIX devices support a bitrate of either 1.25Gbps or 2.5Gbps. If possible,
select the higher bitrate to allow for a maximum trace bandwidth.

- Generate clock: This parameter is ignored for AURIX devices.

AURIX Trace Overview and Use-Cases

35 of 51 Application Note

www.isystem.com

Figure 40: AGBT Interface Configuration (Number of Lanes, Baudrate)

2.2.3 winIDEA Trace Analyzer Configuration

You can either create a new trace configuration for this trace use-case, or you can derive it from an
already existing configuration, e.g. from OS profiling configuration described in section 2.1.

Figure 41: Derive a new winIDEA Analyzer Trace Configuration from an existing Configuration

A trace configuration for OS task and ISR2, as a full program trace profiling of two cores (CPU0 and
CPU2), could, for instance, look like depicted in Figure 41. The configuration should have a descriptive
name, enabled Profiler Analysis and enabled Manual Hardware Trigger Configuration.

AURIX Trace Overview and Use-Cases

36 of 51 Application Note

www.isystem.com

Figure 42 shows the MCDS configuration corresponding to the POB/BOB connectivity described in
Figure 35.

Figure 42: POB/BOB MUX and Timestamping Configuration

Trigger:
The “Trigger Position” setting is not relevant in this case, as we will use DAP Upload-While-Sampling.

MUX:
The BOB_SRI and POB X and Y MUXes are set in the following way:

• BOB_SRI1: CPU2 (PSPR, DSPR…), i.e. connected to the SRI interface of the CPU2 local memory.

• BOB_SRI2: CPU2 (PSPR, DSPR…), i.e. connected to the SRI interface of the CPU2 local memory.

• POB X: CPU0, i.e. connected to CPU0

• POB Y: CPU2, i.e. connected to CPU2

Time stamps:
TICK time stamping is used (“Assume source to be tick”).
In this case, the value entered for TSUPRSCL and also the “Reference clock” selection is irrelevant.

Options:
No additional options need to be enabled.

AURIX Trace Overview and Use-Cases

37 of 51 Application Note

www.isystem.com

Figure 43 shows the required POB X configuration (POB X is connected to CPU0).

Figure 43: POB_X Configuration to trace the Program Flow of Core 0

Trigger: not used
Event: not used
Action:

• ptu_enable: ALWAYS (unconditional program flow trace)

AURIX Trace Overview and Use-Cases

38 of 51 Application Note

www.isystem.com

How to handle Program Flow Trace Overflows?
For program trace on CPU2, a first attempt also used unconditional program trace, i.e. ptu_enable =
ALWAYS. However, this trace configuration generated immediate AGBT trace buffer overflows. Further
analysis reveals that the root cause for the overflow is the execution of a short software loop, while
the OS idle task is running on CPU2. This software loop is implemented in the OS function
“Os_Hal_CoreFreeze”.
Such short software loops are generally rather “trace unfriendly” as they generate program trace
message at a high rate and therefore tend to overflow trace buffer/interfaces.
As shown in Figure 44 the “Os_Hal_CoreFreeze” function implements a simple wait loop by jumping
to itself. Each jump generates a program trace message (IPI_C message).

Figure 44: Program trace recording of the software loop implemented in “Os_Hal_CoreFreeze”.

In order to avoid these overflows, we can either add NOP instructions within the loop (to reduce the
trace message generation rate) or we exclude this software loop of the Idle task from the program flow
trace. Modification of the source code is often not possible, so we go for the option excluding the loop
from program trace. In other words, the POB connected to CPU2 is configured in a way that it generates
program trace messages for all code areas, except when the core executes code of the function body
of the function “Os_Hal_CoreFreeze”.

A magnitude (i.e. address range) compactor of the POB is used to generate a trigger when the CPU
instruction pointer (address of executed instruction) falls into the address range of
“Os_Hal_CoreFreeze”.

Figure 45: PTU address range trigger covering the “Os_Hal_CoreFreeze” object.

The trigger (ptu_trig_0) is mapped to event EVT0 and inverted (NOT). Thus, the Event is active while
the CPU executes instruction outside of the “Os_Hal_CoreFreeze” function body.

AURIX Trace Overview and Use-Cases

39 of 51 Application Note

www.isystem.com

Figure 46: ptu_trig_0 is mapped to EVT0 and inverted (NOT)

Finally, the event EVT0 is mapped to the Program Trace enable action (ptu_enable).
While (Level = State) the event EVT0 is active (Qualifier = Active), program trace is enabled.

Figure 47: Enabling Program Trace while EVT0 is active.

AURIX Trace Overview and Use-Cases

40 of 51 Application Note

www.isystem.com

Figure 48 shows the required POB Y configuration (POB Y is connected to CPU2).

Figure 48: POB_Y Configuration to trace the Program Flow and Data Write Accesses to the OS Objects of Core 2

Trigger:

• Two magnitude comparators (address range comparators) of the Data Trace Unit (DTU) of the
POB generate a trigger when CPU2 access the corresponding CurrentTask (Running Task) and
CurrentIsr (RunningISR2) variables of the OS.

• A magnitude comparator (address range comparator) of the Program Trace Unit (PTU) of the
POB generates a trigger when CPU2 executes an instruction located in the address range
covered by the function “Os_Hal_CoreFreeze”.

Events:

• Trigger dtu_ea_trig_2 is mapped to EVT10.

• Trigger dtu_ea_trig_3 is mapped to EVT11.

• Trigger ptu_trig_0 is inverted (!) and mapped to EVT0.

Actions:

• EVT10 or EVT11 both cause capturing (by DTU) the Write Access Data (dtu_wdat) and Write
Access Address (dtu_waddr).

• EVT0 is mapped to Action ptu_enable, i.e. program trace is enabled while EVT0 is true, i.e. the
CPU executed instruction located outside of the function body of function
“Os_Hal_CoreFreeze”.

AURIX Trace Overview and Use-Cases

41 of 51 Application Note

www.isystem.com

Figure 49 shows the required BOB_SRI configuration. In this configuration the Data Trace Unit 1 (DTU1)
of the BOB_SRI is used to trace the CurrentTask and CurrentIsr object of CPU0, DTU2 is used to trace
the CurrentTask and CurrentIsr object of CPU1.

Figure 49: BOB_SRI Configuration to trace Data Write Accessed of Cores 0 and 1 to the corresponding OS
Objects

Trigger:

• Two magnitude comparators (address comparators) generate a trigger when CPU0/1 access
the corresponding CurrentTask (Running Task) and CurrentIsr (RunningISR2) variables of the
OS.

Configuration of dtu1_ea_trig_0 (Running Task):

Configuration of dtu1_ea_trig_1 (Running ISR2):

DTU2 is configured accordingly.

AURIX Trace Overview and Use-Cases

42 of 51 Application Note

www.isystem.com

Events:

• Trigger dtu1_ea_trig_0 is mapped to EVT0.

• Trigger dtu1_ea_trig_0 is mapped to EVT1.

• Trigger dtu2_ea_trig_0 is mapped to EVT14.

• Trigger dtu2_ea_trig_0 is mapped to EVT15.

Actions:

• EVT0 or EVT1 both cause capturing (by DTU1) the Write Access Data (dtu1_wdat) and Write
Access Address (dtu1_waddr).

• EVT14 or EVT15 both cause capturing (by DTU2) the Write Access Data (dtu2_wdat) and Write
Access Address (dtu2_waddr).

AURIX Trace Overview and Use-Cases

43 of 51 Application Note

www.isystem.com

Figure 50 shows the MCX configuration required to use TICK time stamping.

Figure 50: MCX Configuration to generate TICKS for Time Stamping and Upload-While-Sampling

As a final stage of the trace configuration the Recorder, i.e. iC5700, properties need to be set. In this
use-case we immediately start trace recording.
Figure 51 depicts the corresponding Recorder settings.

Figure 51: Analyzer Configuration for immediate Trace Recording

AURIX Trace Overview and Use-Cases

44 of 51 Application Note

www.isystem.com

2.2.4 winIDEA Profiler Configuration

In order to make winIDEA and the winIDEA Profiler aware of the AUTOSAR OS running on the target
the so-called ORTI file, generated by the AUTOSAR generation tool, needs to be imported into winIDEA.
This is done via the menu “Debug – Operating System…”.

When importing the AUTOSAR ORTI file via the “New…” button, the OS type “OSEK AUTOSAR” has to
be selected (see Figure 52). Afterwards you can give the OS awareness some descriptive name. In our
example shown in Figure 53, the ORTI file has the name “Os_Trace.ORT”. As the AUTOSAR OS used in
this example is a Vector Microsar OS, we name the OS-awareness the name “Microsar ORTI”.

Figure 52: Creating of a new OSEK AUTOSAR OS Awarenss

Figure 53: Selection of the AUTOSAR ORTI File (in this example the file “Os_Trace.ORT”)

A “Download” or “Symbol Download” operation also reads in the ORTI file.
Subsequently, the winIDEA Profiler can be configured to utilize the information given by the ORTI file.
As shown in Figure 53, the profiling of “OS objects” needs to be enabled.

AURIX Trace Overview and Use-Cases

45 of 51 Application Note

www.isystem.com

Figure 54: “OS Setup…” Configuration of the Analyzer – Profiler Dialog

Pushing the “OS Setup…” button opens the “RTOS Profiler Options” dialog. The name of the Operating
Systems corresponds to the name that was given via the “Debug – Operating System…” dialog, when
selecting the ORTI file.
All OS objects described by the ORTI are listed under “Objects to profile”. One or multiple objects can
be selected for profiling. The sub-window “Object Info:” provides more detailed info of a selected
object, such as the Name given in the ORTI file and the type of signaling.
In the example shown in Figure 54 the ORTI object RUNNINGTASK[0], i.e. the Running Task on CPU0,
is signaled via the global variable Os_Cfg_Trace_OsCore0_Dyn.CurrentTask. As described in the section
2.1.2 these are the global variables which need to be observed via Data Trace.

In addition to OS objects, also the entire code shall be profiled. This requires the following
configurations.
The “Profile – Code” option needs to be enabled and also a Code Profiler Operation mode needs to be
selected.

AURIX Trace Overview and Use-Cases

46 of 51 Application Note

www.isystem.com

In general, the following function profiling modes are supported:

Operating
Mode

Concepts Description

Entry/Exit

Function
Nesting

Profiling in Entry/Exit mode also recognizes function nesting.

Operating
System

If a preemptive Operating System (OS) is used, it is required to also
signal and profile the context switches of the OS.
The profiler basically maintains a function call stack for each
recognized OS context.

Compiler
Optimization

Entry/Exit mode profiling does not cater for function exit
optimizations, i.e. function exit optimizations may yield this
profiling mode unusable.

Flat

Function
Nesting

Profiling in Flat mode does not recognize function nesting. It
assume a valid entry/exit sequence for each function.

Operating
System

In Flat mode it is not necessary to also profile the context switches
of an OS.

Compiler
Optimization

Flat mode profiling is not affects by compiler optimizations.

Range

Function
Nesting

Profiling in Range mode also recognizes function nesting.

Operating
System

If a preemptive Operating System (OS) is used, it is required to also
signal and profile the context switches of the OS.
The profiler basically maintains a function call stack for each
recognized OS context.

Compiler
Optimization

Range mode profiling performs an in-depth analysis of the code
trying to recognize and compensate compiler optimizations, such
a function tail optimizations.

AURIX Trace Overview and Use-Cases

47 of 51 Application Note

www.isystem.com

Figure 55: Profiler Configuration of OS Profiling and Code (Function) Profiling

AURIX Trace Overview and Use-Cases

48 of 51 Application Note

www.isystem.com

2.2.5 winIDEA Profiler View

Figure 56 and Figure 57 show the resulting profiler timeline. The “Code” section shows the profiler
timeline of functions, the “Data” section displays the timeline of the OS tasks and ISR2s.

Figure 56: Sample Timeline of a dual-core OS (task and ISR2) and Code (Function) Profile

Figure 57: Zoomed-In section of the sample Profiler Timeline shown in Figure 56
(Profiler Operating Mode = Range)

AURIX Trace Overview and Use-Cases

49 of 51 Application Note

www.isystem.com

2.3 Function Specific Program Trace

Full program flow trace might not be feasible in situations where an AGBT trace interface is not
available. In these situations, Function-Specific Program Trace can give insight into the behavior of a
specific function. We can avoid overflowing the trace buffer by cleverly configuring the trace buffer
while still getting sufficient Program Trace to resolve an issue.
Let’s say we want to record the function c0_RunA and all its subfunctions. First, we pick a POB for our
analysis, in this case, POB X. We map POB X to Core 0 because that’s where our function executes.
Then, we configure two events, EVT0 and EVT1, for the entry and exit point of the function. The events
create a cross-trigger action that the MCX receives (see 1 in Figure 59).
In the MCX menu, the events from POB X increment and clear a counter. The same counter maps back
to tcx_trig_0 via EVT7. Finally, if we go back to Figure 58, we use that trigger to enable the program
trace.
To summarize, we increment a counter at the beginning of our function of interest and decrement it
at the exit. Whenever the counter is active, meaning non-zero, it enables Program Trace. That has the
effect that we record the function, as well as all its subfunctions.

Figure 58: We use function entry and exit triggers to increment and clear an MCX counter. We can then use the
MCX counter to enable Program Trace.

AURIX Trace Overview and Use-Cases

50 of 51 Application Note

www.isystem.com

Figure 59: We use the entry and exit event from POB X to increment and clear an MCX counter. We then provide
the state of the counter back to POB X to enable the Program Trace.

AURIX Trace Overview and Use-Cases

51 of 51 Application Note

www.isystem.com

3 Technical support

3.1 Online resources

Online Help

winIDEA and testIDEA

online help

Knowledge Base

Tips & tricks categorized by
issue type and architecture

Tutorials

From a beginner to an
expert

Technical Notes

How-tos for winIDEA

functionalities with scripts

Application Notes

How-to notes on advanced

use-cases

Webinars

Technical webinars about

ISYSTEM tools with use cases

3.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

iSYSTEM has made every effort to ensure the accuracy and reliability of the information provided in
this document at the time of publishing. Whilst iSYSTEM reserves the right to make changes to its
products and/or the specifications detailed herein, it does not make any representations or
commitments to update this document.

© iSYSTEM. All rights reserved.

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

