This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.

Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.
All trademarks are property of their respective owners.

iSYSTEM is an ISO 9001 certified company

AURIX Trace Overview and Use-Cases

Table of Contents

1 T a oY [V o] o HS PSSR USR 2
1.1 Overview of the AURIX On-Chip Trace Archit@Cture........ccceeeecveeiiciiee e 2
1.2 Trace MUIPIEXEr (IMIUX)...coieieiieeiiiie ettt e e e e e e et e e e saaa e e e enaaeeeennnnaeean 3
1.3 Processor Observation BIOCK (POB)ccuieiiieeciieeciee e cteeetee et e iae e saae e ste e e e e 4
1.4 Bus Observation BIOCK (BOB)eeccueiiiiieiieeeciieecieeesiee e stteeeteeesaeesteaeaaeesaveeesaeessseesnseeennnas 5
1.5 Multi-Core Cross CONNECT (IMCX) ..eecviieeiiieiiieeiieeeieeeetee e e e tee e s aeesteeesaeesareeesaaeesareessaeennnas 7
1.6 [0 [0 T a oY a1 1=T0'a o oY 2SSOSR 14
1.7 DEDUE ACCESS POIt (DAP) ..veiiiieeeiiee ettt et e et e e tte e et e e stae e s teeebaeessseesnseeesaeesnseeanns 14
1.8 AURORA Gigabit (AGBT) INtEIfACEuiiiuiieeiie ettt tae et e e e st e e saae e eanee e 15
1.9 Usage of Initialization ((INI) FIlES....c.ueiiiiieiieciie ettt s e e e e ree e 17

2 B [ol =T O =T O 1YL RN 18
2.1 Multi-Core OS Profiling Via DAPooiiiiee ettt et e st e e bae e e e ebae e e e nnaaeas 19
2.2 Multi-Core OS & Program Trace Via AGBTcieuiuiiieiiiiieeeiiieeeesiiee e siee e s vee e e eraee e s ennaeas 32
2.3 Function SPecific Program TraCeccucuieeeiiiiee ettt et e et e e e rae e e e erae e e e 49

N =Yoo [1 or= Y 0T o] o SRR 51
3.1 (0] 0] 1T a1l ST o T ol TSRS 51
3.2 [61e] 01 - o SR PP OO PP PPPP T TOPPPPPI 51

1 of 51 Application Note

www.isystem.com

AURIX Trace Overview and Use-Cases

1 Introduction

The application note provides an overview of the on-chip trace architecture and capabilities of the
Infineon AURIX micro controller family. Furthermore, this document discusses some common use-
cases of the AURIX trace infrastructure in combination with the iSYSTEM On-Chip Analyzers iC500,
iC5700 or iC6000.

1.1 Overview of the AURIX On-Chip Trace Architecture

The AURIX on-chip trace architecture is based on a central trace infrastructure, which can be connected
to various on-chip system resources like CPUs or buses by means of multiplexors (MUX). This trace
infrastructure is part of the so-called Multi-Core Debug System (MCDS) and is only available on special
Emulation Devices.

Figure 1 shows a simplified block diagram of a TC3x emulation device, including MCDS on-chip trace
infrastructure. The components within the grey box are only available on Emulation devices.

Peripherals
(CAN, LIN,...)

FLASH Bridge

Shared Resource Interconnect (SRI) SPB

0OCDS Trifger Switch (pTGS) |
‘ |

MU 0TGB
PUS DMA
pUA OLDA GT™
pU3
‘ PU2
pU1

CPUO

SRI

Yy V VY VY Yy Vv A \

\ Trace MUX J [Trace MUX | SRI Bridge

On-Chip
Debug * * * * * ‘} A A
DAP/ BOB BOB BOB
« » e POBx POBy POBz | MCDS | . A oy
I I I I I I
‘ Multi-Core Cross Connect (MCX) / Memory Controller (DMC) ‘
|
<> AGBT = EMEM
<—» DAPE |«» | # Y
Back Bone Bus (BBB)

Figure 1: Simplified Block Diagram of a TC3x Emulation Device

The main components of the MCDS trace infrastructure are:

Trace Multiplexer (MUX)

Processor Observation Block (POB)

Bus Observation Block (BOB)

Multi-Core Cross Connect (MCX)

Memory Controller (DMC)

Emulation Memory (EMEM)

Debug Access Port (DAP), optional DAPE on TC3x on Emulation Devices
Optional AURORA Gigabit (AGBT) Interface

In the following chapters the individual MCDS components are describes in more details.

2 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

1.2 Trace Multiplexer (MUX)

The MUX allows to connect the POBs to the various TriCore CPUs implemented on the chip. The TC2x
AURIX generation implements two POBs. However, some TC2x derivatives (TC2xxTx) include three
cores. Thus, in these cases only two out of three cores can be connected to a POB.

There are additional multiplexers attached to the Bus Observation Block (BOB) connected to the
System Resource Interconnect (SRI). These multiplexers allow to select specific SRI slaves to be
connected to the SRI BOB, e.g. LMU RAM or specific CPU Local RAMs (CPUO PSPR, DSPR...).

Within the winIDEA trace configuration dialog, the Trace Multiplexers are represented by the
configuration section depicted in Figure 2 (menu: “Analyzer Configuration — Hardware — Configure... -
MCDS”).

MCDS | TriCore ¥ TriCore ¥ SRI SPB MC¥ iMET

Trigger
Trigger Position Beagin w

LI
Which SRI slave is seen by SRI1 LMU (LML SRAM, EMEM) e
Which SRI slave is seen by SRIZ CPUQ (PSPR,D5PR...) e
Which processor core is seen by POB X CPUD W
Which processor core is seen by POB Y CPU1 W

Figure 2: winIDEA Analyzer - MCDS Trace Multiplexer Configuration (TC2x)

The Processor Observation Block X (POB X) can, for instance, be connected to either nothing, to CPUO,
CPU1 or CPU2 (see Figure 3).

Note: With the AURIX TC2x family only the two POBs X and Y are available, whereas the AURIX family
TC3x implements three POBs X, Y and Z.

ML
Which SRI slave is seen by SRI1 LMU (LMU SRAM, EMEM) e
Which SRI slave is seen by SRIZ CPUD (PSPR,DSPR...) W

Which processor core is seen by POB X

Which processor core is seen by POB Y

Figure 3: winIDEA Analyzer — POB X Processor Selection Options (TC2x)

The Bus Observation Block connected to the SRI (BOB SRI 1/2) can be hooked up to various SRl slaves,
for instance the processor local RAMs or LMU RAM (see Figure 4).

3of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

MLIX

Which SRI slave is seen by SRI1 LMU (LMU SR.AM, EMEM) “f\]\

CPU1 (PSPR,DSFR...)
CPU2 (PSPR,DSPR...

Which SRI slave is seen by SRIZ

LMU (LML SE.AM, EMEM)

FMUD DFlash, BootROM, CTRL Reg
PMUD PFlash0

PMUQD PFlash1

XBar

Figure 4: winIDEA Analyzer — POB SRI1 SRI Slave Selection Options (on TC277TF)

Which processor core is seen by POB X

Which processor core is seen by POB Y

1.3 Processor Observation Block (POB)

Each of the POBs can be connected to one of the TriCore CPUs. The POB can monitor the instruction
execution and the data transactions performed by the CPU. Thus, a POB can generate trace messages
for program flow trace and for data access trace.

In addition, a POB offers various types of hardware comparators which allow to limit/focus trace to
particular areas of interest, e.g. limit data access trace of specific data address ranges or limit program
trace to specific program code areas (e.g. functions).

The POB hardware configuration options are represented in winIDEA by a configuration dialog as
shown in Figure 5.

Trigger - [Advanced Coverage Trigger] <

McDs TriCore X TriCoreY SRI SPB MCX INET

Action (double dick to edit) Event {double dick to edit) Trigger (double dick to edit)
dcu_enable core_crevt -
e core_trigd
dtu_wdat EVT10 core_trigl
dtu_wadr EVT10 core_trig2
Otl_radr - core_rig3
ptuensble B0 core_trig4
ptu_nesting - core_trighs
ptu_sync i
otu_enable
otu_sync -
wiu_enable_0 - EVT10 diu_ea_trig_0
wiu_enable_1 - BT
wiu_enable_2 - EVT12 -
wtu_enable_3 - EvT13- N_ | |core ea_
wiu_enable_4 - EVT14 - IP == BswM MainFunction
wiu_enable_5 - EVT15 - ptu_trig_1 ALWAYS
wiu_enable_g - ptu_trig_2 ALWAYS
wiu_enable_7 - ptu_trig_3 ALWAYS
tc_act_0 - ptu_trig_4 ALWAYS
tc_act_1 - ptu_trig_5 ALWAYS
tc_act_2 - otu_trig_0 ALWAYS
tc_act_3 - otu_trig_1 ALWAYS
tsu rel - Le W - W) JSLMLAYE,
dtu_ea_trig_0 [isystem_trace]
et S
diu_ea_trig_2 ALWAYS
diu_ea_trig_3 ALWAYS
dtu_ea_trig_4 ALWAYS
diu_ea_trig_5 ALWAYS
dtu_es_trig_& ALWAYS
diu_ea_trig_7 ALWAYS
dtu_dat_trig_0 ALWAYS
FTU_TC program trace enable dtu_dat_trig_1 ALWAYS
diu_dat_trig 2 ALWAYS
Advanced... dtu_dat_trig_3 ALWAYS
dtu_acc_wr
deu_acc_rd W
Ve Wizard... 1] Create Template... Cancel Help

Figure 5: Manual Trace Configuration Dialog for a Processor Observation Block (POB X)

A manual configuration process of a POB is basically done from right to left. The right most column lists
all available trace triggers of a POB. Such triggers are generated by hardware comparators
implemented in a POB. The comparators are typically configured to generate a trigger on an address
or data match, i.e. when the CPU executes an instruction located at a specific address, when the CPU
accesses (read/write) specific memory locations or when the CPU read/writes a specific data value
to/from memory.

4 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

A trigger can then be mapped to one or multiple events. Events can also be formed by an logical AND
combination of multiple triggers (e.g. write access to a specific address AND write of a specific data
value).

An event can finally be connected to one or multiple actions. Such actions can for instance be the start
of program trace or the capture of an address and value of a data write access.

Figure 5 illustrates this concepts based on two examples.

Example 1 (blue):

Use-case:

Program trace starts once the CPU connected to POB X executes the first instruction of the function
BswM_MainFunction.

POB X Configuration:

The trigger is generated by using an address comparator of the POB Program Trace Unit (PTU). This
address comparator monitors the CPU Instruction Pointer (IP). As soon as the IP matches the address
value of BswM_MainFunction, the ptu_trig_0 is asserted.

The ptu_trig_0 is mapped to Event EVTO.

Event EVTO is routed to the Action ptu_enable, thus Program Trace Unit (PTU) gets enabled (generates
program trace messages) when EVTO is active.

Example 2 (red):

Use-Case:

Data trace records all write access to the global variable isystem_trace, performed be the CPU
connected to POB X.

POB X Configuration:

The trigger is generated by using an address comparator of the POB Data Trace Unit (DTU). This address
comparator monitors the addresses of data read/write transactions of the CPU connected to POB X.
When the data read/write address matches the address (range) of the global variable isystem_trace
the dtu_ea_trig_ 0 trigger is asserted.

The dtu_ea_trig_0 trigger is mapped t Event EVT10.

Event EVT10 is routed to the Actions dtu_wdat and dtu_wadr, thus the Data Trace Unit (DTU) of POB
X captures the data write data value (wdat) and the data write address (wadr) when EVT10 is active.

1.4 Bus Observation Block (BOB)

The MCDS implements two Bus Observation Blocks, BOB_SRI and BOB_SPB. The BOB_SPB is connected
to the SPB peripheral bus. The two sub-blocks of the BOB_SRI can be connected to two slaves of the
SRI bus.

The BOBs monitor the data transactions, performed by an bus master, over the SRl or SPB, respectively.
Thus, a BOB can generate trace messages for data access trace.

In addition, a BOB offers various types of hardware comparators which allow to limit/focus trace to
particular areas of interest, e.g. limit data access trace of specific data address ranges.

The BOB hardware configuration options are represented in winIDEA by a configuration dialog as
shown in Figure 6.

5 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Trigger - [Advanced Coverage Trigger]

MCDS TriCore ¥ TriCore ¥ SRI SPB

Action (double dick to edit)

MCX INET

Event {double dick to edit)

Trigger (double dick to edit)

dcu_enable EVT0 dtul ea trig 0 diul_ea_fine
L EVT1 - dtu2_ea_fine
dtul wdat EVTO EvT2 - diul ea trig 0 isystem_trace
dtul_wadr EVTOD EVT3 - diul ea_trig 1 ALWAYS
- = EVT4 - diul ea trig 2 ALWAYS

diulrade EVTS diul ea trig 3 ALWAYS
dtu2_wdat EVT15 EVTE - dtul_dat_trig_0 ALWAYS
dtuZ_wadr EVT15 EVT7 - diul dat_trig 1 ALWAYS
oz Taat = EVTS dtul_dat_trig_2 ALWAYS
dtu?_radr EVTS - diul dat_trig 3 ALWAYS
wiu_enable_0 EVT10 - dtul_acc_trig_0 Access
wiu_enable_1 EVT11 - dtul_scc_trig_1 Access
wiu_enable_2 EVT12 - dtul_acc_trig_2 Access
wiu_enable_3 EVT13 - diil scc drig 3 Y
wiu_enable_4 EyT1a dtu2_ea_trig_0 [isystem_trace_runnable]
wiu_enable_5 EVT15 dtu2_ea_trig_0 &dtu2_acc_trig_0 o107 P == 1 AETTAYS
wiu_enable_g dtu2_ea_trig_2 ALWAYS
wiu_enable_7 dtu2_ea_trig_3 ALWAYS
sri_act_0 diuZ_dat_trig 0 ALWAYS
sri_act_1 dtu?_dat_trig_1 ALWAYS
sri_act_2 \ |dtuZ_dat_trig_2 ALWAYS
ari act 3 diuddattrig2 ALLAYE
sri_act_4 dtu2_acc_trig_0 Write, Master=0x2
sri_act_5 L5 P Ly 'S ATESS
sri_act_6 dtu2_acc_trig_2 Access
sri_act_7 dtu2_acc_trig_3 Access
tsu_rel deu_ei

deu_sus

deu_err

sri_trig_0

sri_trig_1

sri_trig_2
DTU_SRI1 write data trace enable sri_trig_3

Ve Wizard... %1 Create Template...

Cancel Help
Figure 6: Manual Trace Configuration Dialog for a SRI Bus Observation Block (BOB_SRI)

A manual configuration process of a BOB is basically done from right to left. The right most column
lists all available trace triggers of a BOB. Such triggers are generated by hardware comparators
implemented in a BOB. The comparators are typically configured to generate a trigger on an address
match, e.g. when a CPU or other SRI bus masters such as a DMA controller accesses (read/write) a
specific memory locations. There are also other types of comparators available which monitor data
values of SRI bus transactions or monitor which bus master performs the bus transaction.

A trigger can then be mapped to one or multiple events. Events can also be formed by and AND
combination of multiple triggers (e.g. write access to a specific address AND write of a specific bus
master).

An event can finally be connected to one or multiple actions. Such actions can for instance be the start
of data trace, i.e. capturing address and value of a data write transactions.

Figure 6 illustrates this concepts based on two examples.

Example 1 (blue):

Use-case:

Data write trace of the global variable isystem_trace (using for instrumented OS profiling). In this
example the variable isystem_trace resides in the LMU RAM, i.e. write transactions of all CPUs are
performed via the SRI bus and thus can be monitored by the BOB_SRI.

BOB_SRI Configuration:

The trigger is generated by using an address comparator of the BOB_SRI Data Trace Unit 1 (DTU 1).
This address comparator monitors the addresses of data read/write transactions via the SRI
(performed by any SRI bus master). When the data read/write address matches the address (range) of
the global variable isystem_trace the dtul_ea_trig_0 trigger is asserted.

The dtul_ea_trig_0 trigger is mapped to Event EVTO.

Event EVTO is routed to the Actions dtul_wdat and dtul_wadr, thus the Data Trace Unit 1 (DTU 1) of
BOB_SRI captures the data write data value (wdat) and the data write address (wadr) when EVTO is
active.

6 of 51 Application Note

www.isystem.com

AURIX Trace Overview and Use-Cases

Example 2 (red):

Use-Case:

Data trace records all write access to the global variable isystem_trace_runnable, performed by CPU1.
In this example the variable isystem_trace_runnable resides in the LMU RAM, i.e. write transactions
of all CPUs are performed via the SRI bus and thus can be monitored by the BOB_SRI.

The bus master ID of CPU1 is 0x2.

In terms of AUTOSAR profiling, this means that only Runnables executed by CPU1 are profiled. The
variable isystem_trace_runnable is used for instrumented Runnable trace of all CPUs.

BOB_SRI Configuration:

Two types of triggers are used in this example.

One trigger is generated by using an address comparator of the BOB_SRI Data Trace Unit 2 (DTU 2).
This address comparator monitors the addresses of data read/write transactions via the SRI
(performed by any SRI bus master). When the data read/write address matches the address (range) of
the global variable isystem_trace_runnable the dtu2_ea_trig_0 trigger is asserted.

The second trigger is generated by using a special comparator type which can monitor which SRI bus
master performs the SRI bus transaction (a so called “masked magnitude comparator”). Whenever the
SRI bus transactions is performed by the bus master with ID=0x2 (i.e. CPU1) the dtu2_acc_trig_O trigger
is asserted.

Both triggers, dtu2_ea_trig 0 and dtu2_acc_trig0 are mapped to Event EVT15. The Event is asserted
only in case both triggers are active, i.e. they form an AND combination. Thus, EVT15 is only asserted
when CPU1 performs the data transaction to isystem_trace_runnable.

Event EVT15 is routed to the Actions dtu2_wdat and dtu2_wadr, thus the Data Trace Unit 2 (DTU 2) of
POB_SRI captures the data write data value (wdat) and the data write address (wadr) when EVT15 is
active.

1.5 Multi-Core Cross Connect (MCX)

The functionality of the MCX can be divided into three categories:
1. Time Stamp Message Generation
2. Message Storage Control
3. Event Counters
4. Trigger Feedback to Observation Blocks (POB/BOB)

1.5.1 Time Stamp Message Generation

In order to understand the time stamping concepts of the MCDS it is essential to understand that the
trace messages delivered by the POBs and BOBs do not contain any timing information, i.e. there is no
such thing as a time stamp within in each trace message.

Timing information is added by the MCX by adding dedicated time stamp messages.

Another important aspect is, that the whole message storage and time stamping approach is based on
the underlying concept that trace data can be stored on-chip (in the Emulation Memory, EMEM) and
read out by a trace tool at some later stage.

There are several time stamping concepts available, but typically either one of the following two
concepts is used.
For both concepts the time stamps are derived from the counter structure depicted in Figure 7.

7 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

= Period
R A TSU_TC_TRIG
Reference Clock (TSUPRSCL)
(typ. Main PLL Clock / 24) Ref. Clock Counter Timestamp 37-bit ABS Ti
(TSUREFCNT) -bit imestamp
(TSU_ABS)
MCDS Clock 32-bit Emulation Counter
(typ. CPU Clock/ 2) » (TSUEMUCNT)
31 7 0

—» 8-bit TICK Timestamp

l | = 32-bit REL Timestamp
(TSU_REL)

Figure 7: Time Stamp Counter Structure of the MCX

Time Stamping Concept 1 - Ticks:

The basic idea behind tick time stamps is an incremental timing information between two subsequent
trace message, by means of an 8-bit wide “Tick” message. A “Tick” message represents one MCDS clock
cycle. When two subsequence trace message are, for instance, generated four MCDS clock cycles apart
from each other, the “space” in between these trace messages is filled with a “ four Ticks” messages.
If these is no new trace message for 255 MCDS clock cycles, then a so called “Multick” is automatically
generated. When a trace tools reads out the on-chip trace buffer, it can incrementally derive the exact
relative time for each trace message by adding the number of MCDS clock cycles between the trace
messages as defined by the number of “Tick” messages

“Tick” based timestamp can be enabled via the Hardware, MCDS and MCX configuration dialogs as
shown in Figure 8.

Hardware Manual Trigger/recorder configuration — Configure... - MCX
Property Value MCDS TriCore ¥ TriCoreY SRI
= Recorder } _ !
Start Trigger Immediately Action (double dick to edit)

Recording Size Limit 1GB tsu_rel_en

jtion tsu_rel_sync
|Timer Interpelation O P | EE_:E:_:I‘I“C
Generate time synchronization messages | | 7 Wy ena_bl\:; 0
Upload while sampling O } iy enable 1
wtl_|:enabIE:2
wtu_enable_3
wiu_enable_4
wtu_enable_5

wtu_enable_6

wiu_enable_7

Manual Trigger/recorder configuration — Configure... - MCDS
Time stamps

Assume source to be | tick ~ wiu_ont_3
¢ wiu_cnt_5
e P = e

Reference dock Main PLL ~ whu_ent_8

|ty ent 15
[

|
Figure 8: Hardware, MCDS and MCX Configuration Dialogs enabling “Tick” based Time Stamping

This “Tick” based time stamping is the most accurate trace method (timing resolution is MCDS clock,
which is typically CPU clock divided by 2), but may consume more trace buffer compared to the
TSU_REL based concept described below.

The resolution of a Tick cannot be configured, i.e. it is fixed to one MCDS clock cycle.

8 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

The Tick time stamp based trace timing reconstruction concept is also depicted in Figure 9.

Trace & Time Stamp Messages received over Time

3]

: P 2
- > . time
6 x Tick = 6 x MCDS Clock i 3xTick=3xMCDS Clock | -8
.V
.Q
.V

£

Recontructed Time of Trace Messages (in Trace Analyzer) —

-
g
@ Tick Time Stamp Message m Program/Data Trace Message
. EMEM

Figure 9: Trace Timing Reconstruction using Tick Time Stamps (no Timer Interpolation)

Note: Tick based time stamping does not support a time correlation (synchronization) of the AURIX
trace to other trace sources, such as another processor or an iC5700 Add-on module (CAN/LIN or

ADIO).

9 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Time Stamping Concept 2 - TSU_REL:

When using TSU_REL based time stamping, full 32-bit time stamps (contents of the TSUEMUCNT
counter) are inserted into the trace stream/storage upon specific triggers. Such triggers can either be
a periodic expiration of the TSUPRSCL prescaler (TSU_TC_TRIG) or other triggers generated by a POB
or BOB and forwarded to the MCX.

There are two typical use-cases.

Use-case 1: Periodic TSU_REL generation

In this case the pre-scaler TSUPRSCL is used to generate a period TSU_TC_TRIG trigger. This trigger can
be mapped to a MCX event and the event finally causes the action of generating a TSU_REL message
(Relative Time Stamp Sync message). All trace massages which occur in between two consecutive
TSU_REL messages are interpolated (equally distributed) between the TSU_REL messages by the trace
tool. Therefore, the trace timing accuracy depends on the TSU_TC TRIG frequency. The higher the
frequency the higher the timing accuracy. The highest accuracy is achieved by setting the TSUPRSCL
pre-scaler value to 1.

If the TSUPRSCL value is 1 and CPU clock (also Main PLL clock) is for instance 200MHz, this means that
a TSU_REL time stamp message is generated after every 240ns. For a TSUPRSCL value of 4, this would
mean a TSU_REL message every 600ns.

Figure 10 show the corresponding MCDS and MCX configuration dialog settings for this use-case.

Hardware Manual Trigger/recorder configuration — Configure... - MCX
Property Value MCDS TriCore X TriCore¥ SRI SPB MCX iNET
=] SRech'der _ } Action (douhle dick to edit] Event (double dick to edit)

e e A [
Recording Size Limit 1GE tsu_rel_sync ~EVTS EVTL -

i ition Begin e =) = EVT2 -
mbonc - o3 -

- - — wiu_enable_0 - EVT4 -
(Generate time synchronization messages wiu_enable_1 _ EVTS -
Upload while sampling O wiu_enable_2 - EVie -

wiu_enable_3 - R
wiu_enable_4 - EVT8 tsu_tc_trig
wiu_enable_5 - TEV =
wiu_enable_g - EVT10 -
wiu_enable_7 - EVT11 -
wiu_ent_0 - EVT1Z -
wiu_ont_1 - EVT13 -
Manual Trigger/recorder configuration — Configure... - MCDS whu_cnt_2 - EVT14 -
wiu_ont_3 - EVT15 -
Time stamps wiu_ont_4 - EVT16 -
wiu_ont_5 - EVT17 -
Assume source to be | tsu_rel w whu_ont_6 - EVT18 -
wiu_ont_7 - EVT19 -
. wiu_cnt_8 - EVT20 -
TSUPRSCL HF-“ whi_cnt 9 - EVT21 -
wiu_ant_10 - EVT2Z -
Reference dock Main PLL w wiu_ont_11 - EVT23 -
wiu_cnt_12
Mote: configure cyde duration in wiu_mt_13
Hardware/CPU Setup/Debugging wiu_cnt_14
wiu_cnt_15
tick_enable
trace_done

Figure 10: Hardware, MCDS and MCX Configuration Dialogs enabling “TSUREL” based Time Stamping

The periodic TSU_REL time stamp based trace timing reconstruction concept is also depicted in Figure
11.

10 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Trace & Time Stamp Messages received over Time

TSUPRSCL TSUPRSCL time

Timer Interpolation of Trace Mesdages between
TSU_REL Timg Stamp Megsges

)

Recontructed Time of Trace Messages (in Trace Analyzer)

nieg Ty
9‘:7 (5:3 TSU_REL Time Stamp Message Program/Data Trace Message
6

Figure 11: Trace Timing Reconstruction using TSU_REL Stamps and Timer Interpolation

Use-case 2: TSU_REL generation upon specific triggers
This kind of time stamp generation is not recommended.

1.5.2 Message Storage Control (in EMEM)

Trace data can either be stored in the so-called Emulation Memory (EMEM) or it is streamed out via

the AGBT interface.

The structure of the EMEM (for a TC2x emulation device) is depicted in Figure 12.

MCDS
SRI (CPU) (Trace) JTAG/DAP
MCDS BBB
Interface Interface
| | | £ : |
Extended Calibration Trace/Calibration Memory (TCM) Extended Trace
Memory (XCM) Memory (XTM)
¢ 3z | § |l
a) Q) 9]
XCM = = Ei= S
2| 2| 2 s
C | |C|| G S
== = =
— L — I
AGBT
Interface
AGBT

Figure 12: Simplified Structure of the Emulation Memory (EMEM) of TC2x

11 of 51
www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

The EMEM consists of three parts, the Extended Calibration Memory (XCM), the Trace/Calibration
Memory (XCM) and the Extended Trace Memory (XTM).

The XCM is used by the calibration software of the application (i.e. CPU). It cannot be used for trace
(MCDS).

The TCM can either be used by the software (CPU) or be the MCDS. The TCM is separated into so called
tiles. These tiles can be assigned to either trace or calibration. All the tiles assigned to trace form the
on-chip trace buffer. The MCX manages how the trace data is written into the TCM trace buffer. The
storage operation in the buffer is basically performed in two phases, the so called “Pre-Trigger Phase”
and the “Post-Trigger Phase”.

Pre-Trigger Phase:
The storage always starts in Pre-Trigger phase. In this phase, the MCX uses a user-defined portion of
the available trace buffer (i.e. tiles assigned to trace) as a circular buffer. The size of this circular buffer
is defined by the Trigger Position. It can either be:

- Begin => No circular buffer available in Pre-Trigger phase.

- Center => Half of the trace buffer is used as circular buffer available in Pre-Trigger phase.

- End =>The entire trace buffer is used as circular buffer available in Pre-Trigger phase.

Upon the occurrence of a user-defined Trigger Event, the storage operation switches into the Post-
Trigger phase. This Trigger Event is either generated by the MCX itself or can originate from a Trigger-
Event-Action generated by a POB or BOB.
Typical Trigger Events are:
- A CPU executes an instruction at a specific address location, such as an entry into a function.
- A CPU performs a memory write access to a specific memory address location using a specific
data value. Such an event could for instance be generated by the OS signaling that a specific
OS task is running.

Post-Trigger Phase:

In this phase the remaining portion of the trace buffer is filled with trace messages which are generated
after the occurrence of the Trigger Event (trace_done). Once the allocated trace buffer is full, trace is
automatically stopped (the CPU operation is not influenced).

The concept is also depicted in Figure 13.

o
TRIGGER z =
Position 2 & %
[2a) O w
Options ‘ ‘
o — o N~ o™ <t N
Q K} o P bt — —
E|IE||E = 2 e 2
K = i= =
PRE/POST
Allocation for
Trigger = Center PRE-TRIGGER POST-TRIGGER

Figure 13: EMEM TCM Trigger Concept

Figure 14 shows the EMEM TCM Trigger Position configuration dialog in the MCDS tab.

12 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Trigger - [Advanced Coverage Trigger]
MCDS TriCore X TriCoreY SRI ~ SPB MCX NET

Trigger

Trigger Position

MLIX

Which SRT slave iz spen b
Figure 14: EMEM TCM Trigger Position Dialog

111 ML SRAM. FME

Figure 15 shows the EMEM TCM Trigger Event configuration dialog in the MCX tab.

Trigger - [Advanced Coverage Trigger]

MCDS TriCore X TriCore Y SRI SPB MCX iNET

Action {double dick to edit) Event (double dick to edit)
tsu_rel_en ALWAYS "
tsu_rel_sync ~EVTS BVvT1 -
tsu_absz_en - EVTZ -
tsu_abs_sync - EVT3 -
wiu_enable_0 - EVvT4 -
wiu_enable_1 - EVTS -
wiu_enable_2 - EVvTe -
wiu_enable_3 - BVT? -
wiu_enable_4 - EVT8 tsu_tc_trig
wiu_enable_5 - EVTS -
wiu_enable_& - EVT10 -
wiu_enable_7 - EVT11 -
whi_ent_0 - EVT12 -
wiu_ont_1 - EVT13 -
why_cnt_2 - EVT14 -
whu_cnt_3 - EVT15 -
wiu_cnt_4 - EVTi5 -
whu_ant_5 - EVT17 -
whu_ant_6 - EVT1S -
wiu_cnt_7 - EVT19 -
wiu_mt_38 - EVT20 -
whu_cnt_9 - EVT21 -
whu_ent_10 - EVT22 -
wiu_cnt_11 - EVT23 -
wiu_cnt_12 -

wiu_cnt_13 -

whu_cnt_14 -

whu_ont_15 -

tick_enable -

trace_done ~EVTO k‘

break_out - -

nnnnnnn At

Switch DMC from Pre to Post-Trigger

Advanced...

Figure 15: Sample trace_done Trigger Event Configuration (switch from Pre- to Post-Trigger mode upon
occurrence of MCX EVTO, imported from POB X).

1.5.3 Event Counters

The MCX implements a set of event counters. These counters can be incremented, decremented and
cleared upon input events, selectable from a pool of events. Such events may be “core instruction
executed”, “cache hit” or events imported to other MCDS components such as POBs or BOBs.

The event counter can either be used a trigger course of MCX events or may be may be output via the
Watchpoint Trace Unit (WTU).

13 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

1.5.4 Trigger Feedback to Observation Blocks

Events of the MCX may be exported and routed to observation blocks such as POBs or BOBs, where
they can be used as triggers.

For example, program trace of a POBs could be enabled when an event counter of the MCX exceeds a
certain threshold.

1.6 Emulation Memory

The structure of the Emulation Memory (EMEM) is shown in Figure 12.
The TCM tiles can be used for the following trace use-cases:

1.6.1 Trace into EMEM until full, Read-out via DAP or JTAG Interface

This use-case is basically described in “Message Storage Control” chapter above.

1.6.2 Trace Streaming via DAP Interface using EMEM Tiles for interim Buffering (“Upload while
Sampling”)

In this case, the available EMEM tiles are managed by the iSYSTEM tool in a way that allows a
permanent streaming of trace data. This so-called “Upload while Sampling” (UWS) mode allows a
virtually unlimited trace recording, assuming that the trace data generation rate (be the MCDS) is less
or equal the data throughput via the DAP interface.

UWS is operational with a minimum of 2 EMEM tiles. However, it is recommended to allocate a
minimum of 3 EMEM tiles to trace when using UWS.

1.6.3 Trace Streaming via AGBT using a EMEM Tile as FIFO

In this case a TCM tile is used as a FIFO within the AGBT trace data path. Please note, the only on a few
AURIX derivatives TCM tiles are used as AGBT FIFO. Typically, the AGBT uses the two XTM files as FIFO.

1.7 Debug Access Port (DAP)

The DAP is an Infineon proprietary interface. It can be used as either a 2-pin (DAPO, DAP1) or 3-pin
(DAPO, DAP1, DAP2) bi-directional interface to communicate debug and trace information between
the AURIX device and the tool. The DAP pins are multiplexed with the standard JTAG pins and are
available on every AURIX device (also Production Devices).

Emulation devices of the TC3x family also offer a second DAP interface, the so-called DAPE.

The DAP interface can operate at clock frequencies of up to 160MHz. The maximum applicable
frequency depends on the hardware setup, i.e. target board layout (e.g. distance between device and
DAP connected on the ECU).

The iSYSTEM iC5700 allows to either access the DAP interface directly via a DAP cable adaptor or via a
dedicated AURIX DAP Active Probe.

14 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

The operation mode and clock frequency can be configured in winIDEA with the “Hardware — CPU

CPU Setup *
CPU1 CPUZ CPU3 CPU4 PLIS H5M
Reset Debugging Analyzer Aurora SoC Advanced SoC Events CPUQO
Qverride startup register values H5M
Oec 0 HEX [JEnabled

Debug channel

Mode |DAP Wide | clock | 10000 |kHz

DAF Standard

BREIM drive HIGH

[“IDAPE |DAP Wide w | Clock | 120000 |kHz

FLASH
[allow FLASH modification only during download

[allow UCE data flash programming (not recommended)
Warning: Wraong UCE data can lock the device permanentiy!
[] allow Mass erase (MOT Recommended!)
Warning: Mass erase can lock the device permanently!

Trace Buffer
Region TCM hd
Use all available memory for trace buffer

First tile E Mumber of tiles

[Juse Password

Q0000000 Q0000000 Q0000000 00000000 HE%

Q0000000 00000000 00000000 00000000 HEX

. Cancel Help
Options... - SoC”.

Figure 16: DAP Configuration Options in the winIDEA Dialog “CPU Setup — SoC”

1.8 AURORA Gigabit (AGBT) Interface

The AGBT interface is a very-high bandwidth trace streaming interface. It uses differential signaling in
order to achieve transfer bit rates of several Gbit/s (Gbps). On AURIX devices the AGBT bandwidth is
typically 2.5 Gbps. This makes the AGBT interface suitable to perform unconditional program trace and
OS trace on multiple CPUs simultaneously.

However, as the interface runs at frequencies in the GHz range, high-frequency design rules need to
be applied when using the AGBT interface on the target hardware.

The AURIX AGBT interface complies with the AURORA trace interface specification of the NEXUS
5001™ Forum Standard (http://nexus5001.org/)

The operation mode and clock frequency can be configured in winIDEA with the “Hardware — CPU
Options... - Aurora”.

15 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

CPU Setup *
CPU1 CPU2 CPU3 CPU4 CPUS HSM
Reset Debugging Analyzer SoC Advanced SoC SoC Events CPUD
Mumber of lanes 1

Baudrate 1.25 Gbps k
1.25 Gbps
ClGenerate dock [2.5Gbos |

Figure 17: AURORA AGBT Configuration Options in the winIDEA Dialog “CPU Setup — Aurora”

16 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

1.9 Usage of Initialization (.INI) Files

The Initialization file (.INI) is used to configure the following on-chip features:
e Multi-Core Synchronization
e Peripheral Freeze
e AGBT Trigger Output

iSYSTEM provides a INI file for each AURIX family, which covers the typical use-cases. However, a user
may need to modify the INI file according to the particular use-case.

Listing 1 shows a typical INI file.

01 //TLl: For peripheral Suspend control

02 //TL2: for CPU HALT indication

03

04 // MULTI CORE SYNCHRONIZATION

05 // break out outputs from all cores are connected to TL1
06 // capture and hold on TLl is enabled

07 // all cores are suspend targets

08 A CBS TLCHE L 0x00000002 // TL1l capture and hold enabled

09 A CBS TLIST L 0x30000007 // all CPUs are suspended target
10 // DMA is suspend target

11 // HSSL is suspend target

12

13 A CBS TRCO L 0x00000102 // BT1 - CPUO is trigger source

14 // HALT connected to TL2

15 //A CBS_ TRC1 L 0x00000100 // BT1 - CPUl is trigger source
16 //A CBS_TRC2 L 0x00000100 // BTl - CPU2 is trigger source

17 A CBS TLC L 0x00000030 // TL1 forced to active
18 A CBS_TLC L 0x00000000 // TL1 force removed
19

20 // TRACE TRIGGER OUTPUT

21 // MCDS trig out 0 is connected to TL4

22 // output is stretched to min 4PBs clocks

23 // TL4 line is connected to output port 4 (P32.6)

24 A CBS TOPR L 0x00040000 // TL4 connected to trig out pin 4

25 // (port P32.6)

26 A CBS TRMT L 0x00000004 // MCDS trigger out 0 connected to TL4

27 A CBS TOPPS L 0x00000200 // trigger output pulse stretched to 4PBs
28 A P32 PDRO L 0x30333333 // port P32.6 - speed grade 4 (max)

29

30 // DISABLE TRACE TIME WHEN CPU IS STOPPED

31 // Master CPU (CPUO) connects HALT output to TL2
32 // MCDS break in connection

33 A CBS TRMC L 0x00200000 // MCDS Break in is connected to TL2
34

35 [[==mmmmmmmmememememe===

36 //STM suspend control

37 A STMO_OCS L 0x12000000

38 A STM1 OCS L 0x12000000

39 A STM2 OCS L 0x12000000

40 [)======c=mmc==cc===c====

41

Listing 1: Sample AURIX Initialization (INI) File

17 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

2 Trace Use-Cases

This section discusses some common use-cases.

Use-cases:
e Multi-Core OS Profiling via DAP
e Multi-Core OS and Function Profiling via AGBT

18 of 51 Application Note

www.isystem.com

AURIX Trace Overview and Use-Cases

2.1 Multi-Core OS Profiling via DAP

This section demonstrates the profiling of an AUTOSAR OS using all three cores of a TC27x device. The
objective is to perform a timing analysis of the running tasks and running ISR2s of all three cores. The
tasks and ISR2 shall be displayed in the same winIDEA Analyzer window. The trace recording should
last several seconds and shall be performed via the DAP interface of the AURIX device.

2.1.1 What needs to be traced?

The Information Section of the corresponding ORTI file reveals that the OS data object
Os_Cfg_Trace_OsCore_CoreX_Dyn is used for running Task (“CurrentTask”) and running ISR2
(“Currentlsr”) trace.

/**

* Information Section
**/

0S TC27x {
vs_SMP_NUMCPU = "3";
/* 0OS information for AUTOSAR core OsCore Core(Q */
vs COREID[0] = "OsCfg Core OsCore Core0.Core.Id";
RUNNINGTASK[O] = "OsCfg Trace OsCore Core(Dyn.CurrentTask";
RUNNINGISR2[0] = "OsCfg Trace OsCore Core(O Dyn.CurrentIsr";

/* 0OS information for AUTOSAR core OsCore Corel */

vs_COREID[1] = "OsCfg Core OsCore Corel.Core.Id";
RUNNINGTASK[1] = "OsCfg Trace OsCore Corel Dyn.CurrentTask";
RUNNINGISR2([1] = "OsCfg Trace OsCore Corel Dyn.CurrentIsr";

/* OS information for AUTOSAR core OsCore Core2 */

vs COREID[2] = "OsCfg Core OsCore Core2.Core.Id";
RUNNINGTASK[2] = "OsCfg Trace OsCore Core2 Dyn.CurrentTask";
RUNNINGISR2[2] = "OsCfg Trace OsCore Core2 Dyn.CurrentIsr";

be /% ©8 */
Listing 2: Sample ORTI File of the AUTOSAR Demo Application

Displaying the Os_Cfg_Trace OsCore_CoreX_Dyn objects in the winIDEA Watch window (see Figure
18) reveals that all of them are located in the local memory of CPU 2 (please refer to the memory map
description of the Infineon AURIX user manual).

Watch 1
AP PR ORI W = e v
Mame Value Tvpe Address
CurrentTask Prr (0x8000'2F18) = Os_TraceThreadConfigType * (Virtual) S000"AFAC
CurrentIsr Prr (0x0000'0000) = Os_TraceThreadConfigType * (Virtual) 5000"'AFBO
OrtiCurrentServiceld ' (OxTO) unsigned char (Virtual) 5000 "'AFB4
B 0sCfg Trace OsCore_Corel Dyn (Ptr (OxB000"2F24) Os_TraceCoreType (Virtual) S000"AFEQ
CurrentTask Ptr (0x8000'2F24) = 0s_TraceThreadConfigType * (Virtual) S000'AFEQ
CurrentIsr Ptr (0x0000'0000) = Os_TraceThreadConfigType * (Virtual) 5S000'AFE4
OrciCurrentServiceld YW®E9 [(0xET) unsigned char (Virtual) S000"'AFES
B 0sCfg Trace OsCore_ CoreZ Dyn (PLr (Ox8000'2F30) 0s_TraceCorelype (Virtual) S000'B0O1O
CurrentTask Prr (Ox8000'2F30) = 0s_TraceThreadConfigType * (Virtual) S000'B0O1O
CurrentIsr Prr (0x0000'0000) = Os_TraceThreadConfigType * (Virtual) S000'BO14
OrciCurrentServiceld WHES (OxET) unsigned char (Virtual) 5000'BO1S8

Figure 18: winIDEA Watch Window with OS Data Objects used for Tracing RunningTask and RunningISR2

This means that only CPU2 has local access to these objects. The other cores (CPUO and CPU1) need to
access their associated OS data object via the SRI. These access paths are relevant for determining
which on-chip trace concept is most suitable for this setup.

19 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

As CPU2 accesses its OS object locally, only a POB connected to CPU2 can monitor these data
transactions. The data transactions to the OS objects of all other CPUs can be monitored by a BOB_SRI
connected to the SRI slave interface of DSPR of CPU2 (see the corresponding BOB_SRI MUX
configuration in Figure 25).

Figure 19 depicts the AURIX internal data transaction paths of the individual CPUs to the OS data
objects located in DSPR2 (red). It is also shows where the POB and BOB needs to be connected (via
MUX) in order to monitor (i.e. trace) these transactions.

DSPRO CPUO DSPR1 CpU1

SRI
| 1l JL
BOB Program LMU
Data RAM
DSPR2 FLASH
0S Data CPU2
Objects
POB

Figure 19: AURIX-internal Data Access Paths to the OS Data Objects and POB/BOB Observability

Please note, the memory allocation and the corresponding MCDS trace setup described above
applies to this particular sample project. The relevant OS data objects in your AUTOSAR project may
be located in different memory locations, such as LMU or DSPR of CPUO.

20 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

2.1.2 winIDEA Configuration

DAP Active Probe Detection

After the communication to the iC570 has been established, it is recommended to perform a detection
of the connected Active Probe. This can be done via the menu “Hardware — Emulation Options —
Probe”. Select Active Probe and then click the “Refresh” button. Select the detected DAP Active Probe.
In the Active Probe detection shown in Figure 20, the Active Probe has been given a alias “DAP_SLV”.

Emulation Options *

Probe Hardware ©CPU

oM
(@) Active Probe | DAP 5LV || Refresh L\l

Figure 20: iC5700 Active Probe Detection.

DAP Width & Frequency Configuration

As the DAP interface is not only used for debug control communication but also for the transport of
trace data (Upload-While-Sampling), it is essential to set the DAP to maximum performance, i.e. if
possible use “DAP Wide” mode and apply maximum possible clock frequency.

The maximum supported DAP clock frequency supported by both the AURIX device and also the DAP
Active Probe is 160MHz. However, the individual target board layout may not allow a DAP operation
at 160MHz. Thus, the maximum applicable DAP clock be evaluated individually on each target setup.

In addition, for maximum Upload-While-Sampling performance, a minimum of 3 TCM tiles should be
available as Trace Buffer.

CPU Setup X
CPU1 CPU2 HSM
Reset Debugging Analyzer Aurora SoC Advanced 50C SoC Events CPUD

Debug channel

Mode DAP Wide w | Clode | 130000 [kHz

BRKIN drive | HIGH

[Quick LEIST detection

[JHsM Enabled
[JFlush trace when AGET is stopped

Trace Buffer

Region TCM e
Use all available memory for trace buffer

First tile E Mumber of tiles

Figure 21: DAP Interface Configuration

Trace Port Selection

If the DAP interface is used for debug and trace data transfer, the trace data is still buffered in the on-
chip trace buffer, i.e. EMEM. Therefore, the Analyzer Operation mode “On-Chip” needs to be selected.
The Cycle duration does not represent the CPU clock cycle duration, but the MCDS clock cycle duration
(The MCSD clock is typically either equal or half the CPU clock.).

21 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

CPU Setup *

CPU1 CPU2 H3M
Reset Debugging Analyzer Aurora SoC Advanced SoC SoC Events CPUD

Operationmode |0
[l Code missing from download file should be read at run-time

SoC Initialization
Before start Default ...

Figure 22: Trace Port Selection for Trace via DAP (On-Chip)

213 winIDEA Trace Analyzer Configuration
It is recommended to create a new trace configuration for each trace use-case.
CAISYSTEM_SAMPLES_SVN\Infineon\TriCore\T(

/“'PﬁDl

Default

| U Create New Configuration... |

by
Edit Analyzer Configuration List...

Figure 23: Creating a new winIDEA Analyzer Trace Configuration

Atrace configuration for OS task and ISR2 profiling of three cores, could, for instance, look like depicted
in Figure 24. The configuration should have a descriptive name, enabled Profiler Analysis and enabled
Manual Hardware Trigger Configuration.

Mew Configuration =

Mame
| O5_Tasks_ISR2_TripleCore]

Analysis
Profiler
|:| Coverage

Trace - Always Performed

Hardware Trigger Configuration
() Automatic () wizard
() Program flow + Instrumentation () Template
(®) Manual

Initial hardware trigger configuration is empty and user
has to configure it. Wizard assistance is provided for
typical use cases.

Corca

Figure 24: Sample new Trace Configuration

22 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases
Figure 25 shows the MCDS configuration corresponding to the POB/BOB connectivity described in
Figure 19.

Trigger - [Advanced Coverage Trigger]

MCDS TriCore X TriCoreY SRI 5PB MCX iNET

Trigger
Trigger Position End e
MUK
Which 5RI slave is seen by SRI1 CPU2 (PSPR,DSPR...) e
Which SRI slave is seen by SRIZ CPU2 (PSPR,DSPR...) ~
Which processor core is seenby POE X |CPU2 w
Which processor core is seenby POBY | Nothing ~
Time stamps
Assume source to be | tick ~
N
Reference dock Main PLL w

Mote: configure cyde duration in
Hardware/CPU Setup/Debugging

Options
) Mote: enabling this option, will disable the
[Enable trace during CPU reset trigger (MCX/trace_done is set to NEVER)

. Mote: enabling this option, will disable UWS
[continuous mode and force MCX ftrace_done to NEVER

Figure 25: POB/BOB MUX and Timestamping Configuration

Trigger:
The “Trigger Position” setting is not relevant in this case, as we will use DAP Upload-While-Sampling.

MUX:

The BOB_SRI and POB X and Y MUXes are set in the following way:
e BOB_SRI1: CPU2 (PSPR, DSPR...), i.e. connected to the SRl interface of the CPU2 local memory.
e BOB_SRI2: CPU2 (PSPR, DSPR...), i.e. connected to the SRl interface of the CPU2 local memory.
e POBX: CPU2, i.e. connected to CPU2

Time stamps:
TICK time stamping is used (“Assume source to be tick”).
In this case, the value entered for TSUPRSCL and also the “Reference clock” selection is irrelevant.

Options:
No additional options need to be enabled.

23 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Figure 26 shows the required POB X configuration (POB X is connected to CPU2).

Trigger - [Advanced Coverage Trigger] %

McDs TriCore X TriCoreY SRI SPB MCX iNET

Action (double dick to edit) Event (double dick to edit) Trigger (double dick to edit)
deu_enable E ~
deu_sync - EVT1 - core_trigd
dtu_wdat EVT11 | EVT10 EVT2 - core_trigl
dtu_wadr EVT11 | EVT10 EVT3 - core_trig2
dtu_radr - EVvT4 - core_trig3
ptu_enable - EVTS - core_trig4
ptu_nesting - EVTe - core_trig5
ptu_sync - EVT7 - core_trigs
otu_enable - EVTE - core_trig7
otu_sync - EVTS - core_trlevt
wtu_enable_0 - EVT10 dtu_ea_trig_2 core_trievt
wiu_enable_1 - EVT1l dtu_ea_trig_3 core_exevt
wiu_enable_2 - EVT12 - core_swevt
wiu_enable_3 - EVT13 - core_ea_fine
wiu_enable_4 - EVT14 - ptu_trig_0 ALWAYS
wiu_enable_5 - EVT15 - ptu_trig_1 ALWAYS
wiu_enable_a& - ptu_trig_2 ALWAYS
wiu_enable_7 - ptu_trig_3 ALWAYS
tc_act_0 - ptu_trig_4 ALWAYS
tc_act_1 - ptu_trig_5 ALWAYS
tc_act_2 - otu_trig_0 ALWAYS
tc_act_3 - otu_trig_1 ALWAYS
tsu_rel - otu_trig_2 ALWAYS
dtu_ea_trig_0 ALWAYS
dtu_ea_trig_1 ALWAYS
dtu_ea_trig_2 [(OsCfg_Trace_OsCore_Core2_Dyn).Curre
dtu_ea_trig_3 [(OsCfg_Trace_OsCore_Core2_Dyn).Curre
dtu_ea_trig_4 ALWAYS
dtu_ea_trig_5 ALWAYS
dtu_ea_trig_6 ALWAYS
dtu_ea_trig_7 ALWAYS
dtu_dat_trig_0 ALWAYS
DCU_TC status trace enable dtu_dat_trig_1 ALWAYS
dtu_dat_trig_2 ALWAYS
Advanced... dtu_dat_trig_3 ALWAYS
dtu_acc_wr
deu_acc_rd Y]
. o
rd Wizard... 1| Create Template... Cancel Help

Figure 26: POB_X Configuration to trace Data Write Access of Core 2 to the OS Objects of Core 2

Trigger:
e Two magnitude comparators (address comparators) generate a trigger when CPU2 accesses
the Running Task and Running ISR2 signaling variables of the OS.

Configuration of dtu_ea_trig_2 (Running Task):
Trigger x

% | re_CoreZ_Dyn).CurrentTask| Cancel

Entire Object

Configuration of dtu_ea_trig_2 (Running ISR2):
Trigger X

X |:ore_CoreZ_D\,rn).CurrentIer| Cancel

Entire Object

Events:
e Trigger dtu_ea_trig_2 is mapped to EVT10.
e Trigger dtu_ea_trig_3 is mapped to EVT11.

Actions:

24 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

e EVT10 or EVT11 both cause capturing the Write Access Data (dcu_wdat) and Write Access

Address (dcu_waddr).

Figure 27 shows the required POB Y configuration (POB Y is not connected to any CPU).

Trigger - [Advanced Coverage Trigger]

MCDS TriCore¥ TriCore¥ spI SPB MCX

Action (double dick to edit)

deu_enable =
deu_sync -
dtu_wdat -
dtu_wadr -
dtu_radr -
ptu_enable -
ptu_nesting -
ptu_sync -
otu_enable -
otu_sync -
wiu_enable_0 -
wiu_enable_1 -
wiu_enable_2 -
wiu_enable_3 -
wiu_enable_4 -
wiu_enable_5 -
wiu_enable_6 -
wiu_enable_7 -
tc_act_0 -
tc_act_1 -
tc_act_2 -
tc_act_3 -
tsu_rel -

INET

Event (double dick to edit)

EVT1 -
EvVT2 -
EVT3 -
EVT4 -
EVTS -
EVTe -
EVT7 -
EVTE -
EVTS -
EVTi0 -
EVT1i1 -
EVTi2 -
EVT13 -
EVT14 -
EVT15 -

DCIU_TC status trace enable

Advanced...

Ve Wizard... i1 Create Template...

Figure 27: POB_Y Configuration, not used in this use-case

25 of 51

www.isystem.com

Trigger {double dick to edit)

~

core_trigd

core_frigl

core_frig2

core_rig3

core_trig4

core_rig5

core_righ

core_trig7

core_trlevt

core_trilevt

core_exevt

core_swevt

core_ea_fine

ptu_trig_0 ALWAYS

ptu_trig_1 ALWAYS

ptu_trig_2 ALWAYS

ptu_trig_3 ALWAYS

ptu_trig_4 ALWAYS

ptu_trig_5 ALWAYS

otu_trig_0 ALWAYS

otu_trig_1 ALWAYS

otu_trig_2 ALWAYS

dtu_ea_trig_0 ALWAYS

dtu_ea_trig_1 ALWAYS

dtu_ea_trig_2 ALWAYS

dtu_ea_trig_3 ALWAYS

dtu_ea_trig_4 ALWAYS

dtu_ea_trig_5 ALWAYS

dtu_ea_trig_6 ALWAYS

dtu_ea_trig_7 ALWAYS

dtu_dat_trig_0 ALWAYS

dtu_dat_trig_1 ALWAYS

dtu_dat_trig_2 ALWAYS

dtu_dat_trig_3 ALWAYS

dtu_acc_wr

deu_acc_rd Y]
Cancel Help

Application Note

AURIX Trace Overview and Use-Cases

Figure 28 shows the required BOB_SRI configuration. In this configuration the Data Trace Unit 1 (DTU1)
of the BOB_SRI is used to trace the CurrentTask and Currentlsr object of CPUO, DTU2 is used to trace
the CurrentTask and Currentlsr object of CPU1.

Trigger - [Advanced Coverage Trigger] %

MCDS TriCore X TriCore SRI SPB MCX iNET

Action (double dick to edit) Event (double dick to edit) Trigger (double dick to edit)
deu_enable E
decu_sync - EVT1 dtul_ea_trig_1 dtu2_ea_fine
dtul_wdat EVTO | EVT1 EVT2 - dtul_ea_trig_0 [(OsCfg_Trace_OsCore_Cored_Dyn).CurrentT
dtul_wadr EVTO | EVT1 EVT3 - dtul_ea_trig_1 [(0sCfg_Trace_OsCore_Corel_Dyn).Currentl:
dtui_rdat - EVTS - dtul_ea trig_2 ALWAYS
dtul_radr - EVTS - dtul_ea_trig_3 ALWAYS
dtuZ_wdat EVT15 | EVT14 EVTE - dtul dat_trig 0 ALWAYS
diu2_wadr EVT15 | EVT14 EVT7 - dtui_dat_trig_1 ALWAYS
dtuZ_rdat - EVTE - dtul dat_trig_2 ALWAYS
dtu?_radr - EVTY - dtul dat_trig_3 ALWAYS
wiu_enable_0 - EVT10 - diul_acc_trig_0 Access
wiu_enable_1 - EVT11 - dtul_acc_trig_1 Access
wiu_enable_2 - EVT12 - dtul_acc_trig_2 Access
wiu_enable_3 - EVT13 - dtul_acc_trig_3 Access
wiu_enable_4 - EVT14 dtu2_ea_trig_0 dtu2_ea_trig_0 [{OsCfg_Trace_OsCore_Corel_Dyn).CurrentT
wiu_enable_5 - EVT15 dtu2_ea_trig_1 dtu2_ea_trig_1 [{OsCfg_Trace_OsCore_Corel_Dyn).Currentl:
wiu_enable_6 - dtu2_ea_trig_2 ALWAYS
wiu_enable_7 - dtu2_ea_trig_3 ALWAYS
sri_act_0 - dtuZ_dat_trig 0 ALWAYS
sri_act_1 - dtuz_dat_trig 1 ALWAYS
sri_act_2 - dtuZ_dat_trig_2 ALWAYS
sri_act_3 - dtuZ_dat_trig_3 ALWAYS
sri_act_4 - dtu2_acc_trig_0 Access
sri_act_5 - dtu2_acc_trig_1 Access
sri_act_& - dtu2_acc_trig_2 Access
sri_act_7 - dtu2_acc_trig_3 Access
tsu_rel - deu_ei
deu_sus
deu_err
sri_trig_0
sri_trig_1
sri_trig_2
DCU_SRI status trace enable sri_trig_3
rd Wizard... %1 Create Template... Cancel Help

Figure 28: BOB_SRI Configuration to trace Data Write Accessed of Cores 0 and 1 to the corresponding OS
Objects

Trigger:
e Two magnitude comparators (address comparators) generate a trigger when CPUO/1 access

the corresponding CurrentTask (Running Task) and Currentlsr (RunningISR2) variables of the
OsS.

Configuration of dtul_ea_trig_0 (Running Task):
Trigger >

X |re_CoreD_D\,rn).CurrentTasH| Cancel

Entire Object

Configuration of dtul_ea_trig_1 (Running ISR2):
Trigger x

“ore_Core0_Dyn).Currentsr | Cancel

X

Entire Object

DTU2 is configured accordingly.

26 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

e Trigger dtul_ea_trig_0is mapped to EVTO.
e Trigger dtul_ea_trig 0 is mapped to EVT1.
e Trigger dtu2_ea_trig_0is mapped to EVT14.
e Trigger dtu2_ea_trig_0is mapped to EVT15.

Actions:
e EVTO or EVT1 both cause capturing (by DTU1) the Write Access Data (dtul_wdat) and Write
Access Address (dtul_waddr).
e EVT14 or EVT15 both cause capturing (by DTU2) the Write Access Data (dtu2_wdat) and Write
Access Address (dtu2_waddr).

27 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Figure 29 shows the MCX configuration required to use TICK time stamping.

Trigger - [Advanced Coverage Trigger]

MCDS TriCore X TriCore¥ SRI SPB MCX iNET

Action (double dick to edit)

tsu_rel_en - -
tsu_rel_sync

tsu_abs_en

tsu_abs_sync

wiu_enable_0

wtu_enable_1

=
=4
i)
5
o
=
o
(¥

=
=4
(i)
5
o
=
o
("

wiu_enable_4

=
=4
(i)
5
o
=
o
'

=
=
m
E]
o
=
o
@

wiu_enable_7

=

& [}
El
=]

=
=4
E}

wiu_cnt_2

=
=4
E}

=
=4
E}
-

=
=4
E}

=
=4
E}
@

=
=4
E}
~

=

=4
E}
o

=
=
3
o

wiu_cnt_10
whu_cnt_11

=
=4
E}
=

wiu_cnt_13
wihu_cnt_14 -
wiu_cnt_15 -
trace_done -
break_out

crimmmmd it

Event (double dick to edit)

EVT1
EVT2
EVT3
EVT4
EVTS
EVTS
EVT7
EVTS
EVTS -
EVT10 -
EVT11 -
EVTi2 -
EVT13 -
EVT14 -
EVT15 -
EVT1i6 -
EVT17 -
EVTiE -
EVT19 -
EVT20 -
EVT21 -
EVT22 -
EVT23 -

enable tick message generation by DMC

Advanced...

Wizard... #ﬂ Create Template...

Vd

Trigger (double dick to edit)

Cancel Help

Figure 29: MCX Configuration to generate TICKS for Time Stamping and Upload-While-Sampling

As a final stage of the trace configuration the Recorder, i.e. iC5700, properties need to be set. In this
use-case we immediately start trace recording and use the Upload-While-Sampling feature to stream
trace messages via the DAP interface.

Figure 30 depicts the corresponding Recorder settings.

Analyzer Configuration - [O5_ORTI]

HBFJ%BFE Profiler Cowverage

Analysis and Configuration

Profiler
D Coverage
Manual Trigger/Recorder configuration Preset =
FMet Operation...
Options
|:| Reactivate session after CPLU stop
Property Walue
= Recorder ~
Start Trigger Immediately
Recording Size Limit 1GB
Trigger Position Begin
Timer Interpolation |
Generate time synchronization messages [|
Upload while sampling
v

Figure 30: Analyzer Configuration for DAP Upload-While-Sampling (UWS) and immediate Recording

28 of 51

www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

2.1.4 winIDEA Profiler Configuration

In order to make winIDEA and the winIDEA Profiler aware of the AUTOSAR OS running on the target
the so-called ORTI file, generated by the AUTOSAR generation tool, needs to be imported into winIDEA.
This is done via the menu “Debug — Operating System...”.

When importing the AUTOSAR ORTI file via the “New...” button, the OS type “OSEK AUTOSAR” has to
be selected (see Figure 31). Afterwards you can give the OS awareness some descriptive name. In our
example shown in Figure 32, the ORTI file has the name “Os_Trace.ORT”. As the AUTOSAR OS used in
this example is a Vector Microsar OS, we name the OS-awareness the name “Microsar ORTI”.

Operating system >

Operating System

MNew... [

O5Linux

L4Res

Pike05

freeRTOS RTOS

OSEK AUTOSAR I},

Figure 31: Creating of a new OSEK AUTOSAR 0S Awareness-

< Edit opticns

Operating System

Froperty Value
New.. & Configuration
RTOS description file type ORTI
Configure RTOS description file location Os_Trace. ORT
Rename...

Figure 32: Selection of the AUTOSAR ORTI File (in this example the file “Os_Trace.ORT”)

A “Download” or “Symbol Download” operation also reads in the ORTI file.
Subsequently, the winIDEA Profiler can be configured to utilize the information given by the ORTI file.
As shown in Figure 33, the profiling of “OS objects” needs to be enabled.

29 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Hardware Profiler Coverage

| RTOS Profiler Options x
Profile
Operating System
[]code i
Advanced.. Microsar ORTI w
[Jpsta Ohjects to profile
oS ohjects || 08 Setp.. A
[~]caore 1: Tasks
(] aux [~]core 2: Tasks
[]Core 0: 15Rs2
[Metwork []Passpoint []Core 1: ISRs2
| []core 2: 15Rs2
| Code Areas DCDrE 0: SERVICETRACE[0] W
| Enter filtter string(s) Object Info:
| MName: RUNNINGTASK[O]
Definiton: RUNMNINGTASK[O]
Description: Core 0: Tasks
Signaling: OsCfg_Trace_OsCore_Corel_Dyn.CurrentTz

Figure 33: “OS Setup...” Configuration of the Analyzer — Profiler Dialog

Pushing the “OS Setup...” button opens the “RTOS Profiler Options” dialog. The name of the Operating
Systems corresponds to the name that was given via the “Debug — Operating System...” dialog, when

selecting the ORTI file.

All OS objects described by the ORTI are listed under “Objects to profile”. One or multiple objects can
be selected for profiling. The sub-window “Object Info:” provides more detailed info of a selected
object, such as the Name given in the ORTI file and the type of signaling.
In the example shown in Figure 33 the ORTI object RUNNINGTASK][O], i.e. the Running Task on CPUOQ,
is signaled via the global variable Os_Cfg_Trace_OsCore0_Dyn.CurrentTask. As described in the section
2.1.2 these are the global variables which need to be observed via Data Trace.

30 of 51

www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

2.15

winIDEA Profiler View

Figure 34 shows the resulting profiler timeline.

Profiler Timeline X

G-F YL/ B & ol&sF;AAR R Total 10755
s 1oms ms 30ms “0ms S0ms
Data Histary
= Iy 15R2s. Coree

E

E

\ Bl INVALID_ISR_CORE_B

B[CanIsr_®

. B CounterIsr_OsCounterC@

M XSignallsr_OsCore_Cored

It* TaSKs. Cored

Lol App_Task_PlausCheck_Cyclic_1
| Bl App_Task_PlausCheck_Cyelic_2
. P App_Task_PlausCheck_NonCyclic
ML IdleTask_c@

M Init_Task_C@

B Schi_Task_c8

ol Unknown_CORE_8

If"1 15R2s.Corel

- M INVALID_ISR_CORE_1

. M CounterIsr_OsCounterCl

“ M XSignallsr_OsCore_Corel

If't TAsKs. Corel

Lol App_Task_Calc_Cyclic_1

| Bl App_Task_Calc_Cyelic_2

. ML App_Task_Calc_Cyclic_3

[App_Task_Calc_NonCyclic
M IdleTask_C1

Bl Init_Task_C1

Lol SchM_Task_C1

'l Unknown_CORE_1

; ALID_ISR_CORE_2

M CounterIsr_OsCounterC2

‘.l Xsignallsr_OsCore_Core2

If't TASKs. Corez

© Bl App_Task_OutputProc_cyelic_1
. ML App_Task_OutputProc_Cyclic_2
. B App_Task_OutputProc_NenCyclic
Ml IdleTask_C2

Bl Init_Task_c2

Lol SchM_Task_C2

] I nn 1 n 1 nm n 1 nm
- o — Iy L
] L1l] | Ll] 11|
| |
|
| Il | I |l [T I
1 _______Illil_|
[| | NI] |
. 1]] /| |] ||
I 11 1 11 1 11 1 11 1 1
mn
. i n n n n
]]
|
11 1 | 1 | 1 |
m
| | BN NN I S | I R
Ll
1 1 1 1 1
. Hh n m n m
.1 7]
1 1] | 1} | 1}
1l
" L L L .
| |
| | [| | | [| I
| |

Figure 34: Sample winIDEA Profiler Timeline, showing Running Tasks and Running ISR2s of all three Cores of a
Multi-Core AUTOSAR OS running on an Infineon AURIX TC277

310f 51

Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

2.2 Multi-Core OS & Program Trace via AGBT

This section demonstrates the code/function profiling of an AUTOSAR OS based multi-core application.
How many cores can be profiled in parallel depends on the number of available POBs, i.e. either two
or three cores. The objective is to perform timing analysis of the complete software running on the
cores. The OS running tasks and running ISR2s are also traced. This is needed when nested function
profiling is done on systems using a pre-emptive operation system (such as the AUTOSAR OS).

Nested function profiling is provided when the winIDEA Profiler operates in either “Range” or
“Entry/Exit” mode.

The AGBT interface is designed to provide sufficient trace bandwidth for such a use-case (see also
section 1.8)

2.2.1 What needs to be traced?

This use-case requires tracing of the program flow as well as the OS task and ISR2 context. Program
flow trace can only be done by means of Processor Observation Blocks (POB).

In the sample use-case discussed in the following section, we assume that the multi-core AUTOSAR
application is running on three TriCore cores of a TC277TF device. On this device the MCDS offers two
POBs, i.e. only on two out of three cores the program flow can be traced. In our particular use-case
here we decide to focus on CPUO and CPU2, thus we trace the program flow of CPUO and CPU2 via
POBs. The data accesses of CPU2 to the OS objects are also traced by the connected POB. The data
accesses of the other two cores (CPUO and CPU1 can be traced by means of one BOB, by connecting it
to the DSPR2 slave of the SRI. Thus, overall we can trace:

- The program flow of CPUO and CPU2

- The OS tasks and ISR2 of all three cores

Figure 35 depicts the overall setup.

POB

DSPRO CPUO DSPR1 CPU1

i r
{

——W o)
BOB Program LMU
Data RAM
DSPR2 FLASH
0S Data __CPUZ
Objects
POB

Figure 35: Sample AURIX-internal Data Access Paths & POB/BOB Connectivity for Multi-Core Program Flow and
OS Trace

32 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

2.2.2 winIDEA Configuration

Infineon AGBT Active Probe Detection

After the communication to the iC570 has been established, it is recommended to perform a detection
of the connected Active Probe. This can be done via the menu “Hardware — Emulation Options —
Probe”. Select Active Probe and then click the “Refresh” button. Select the detected AGBT Active
Probe.

Ernulation Options

Probe Hardware CPU

o™
{®) Active Probe | v| | Refresh ﬂ

Figure 36: AGBT Active Probe Detection

DAP Width & Frequency Configuration / AGBT Flush & Buffer Configuration

Although an AGBT Active Probe is used, the bi-directional debug communication is still performed via
the DAP interface. Therefore, also the DAP interface needs to be configured. DAP mode should be set
to “DAP Wide”, the DAP clock speed is not that critical in this case as the high-bandwidth trace data
streaming is routed through the AGBT interface.

These settings can be configured via the “Hardware — CPU Options... - SoC” dialog as shown in Figure
37.

CPU Setup
CPU1 CPUZ
Reset Debugging Analyzer Aurora SoC Advanced SoC

Debug channel

Mode DAP Wide w | Clock | 30000 |kHz

BREIM drive HIGH

[] Quick LEIST detection

[]HsM Enabled
Flush trace when AGET is stopped

Trace Buffer
Reqgion TCM e
IUse all available memory for trace buffer

First tile E Mumber of tiles

Figure 37: DAP Mode/Frequency Selection & AGBT Flush/Buffer Selection

The option “Flush trace when AGBT is stopped should be enabled. However, in case an AGBT overflow
occurs at the end of the trace recording, this option should be disabled. Potentially, the flush operation

33 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

which is performed when trace is stopped may actually cause an AGBT overflow. Thus, disabling the
AGBT buffer flushing may eliminate the overflow.

Which type of Trace Buffer can be used depends on the individual device. In general, either EMEM
TCM tiles or the EMEM XTM can be used as AGBT FIFO buffer.

Trace Port Selection
As the AGBT interface is used here, the Analyzer must run in Operation mode “AURORA Trace Port”.

CPU Setup X
CPU1 cPU2 HSM
Reset Debuaaing Analyzer Aurora SoC Advanced SoC SoC Events CPUOD
Operation mode |Aurora Trace Port E}‘

[code missing from download file should be read at run-time

SoC Initialization
Before start Default ...

Figure 38: Analyzer Trace Port Selection for AGBT

The Cycle duration does not directly represent the CPU clock cycle duration, but the MCDS clock cycle
duration. The CPU and also the MCDS clock can be obtained via the TriCore Plugin, which can be
opened via the menu “View — TriCore”.

Push the “Refresh” button while the CPU is running. The plugin will display the current clock settings
for CPU and MCDS in Hz. In the sample shown in Figure 39, the MCDS clock is equal to the CPU clock,
running at 80MHz.

Especially for higher CPU clock frequencies, the MCDS clock is typically half the CPU clock.

[TriCore] - TnCore

e
lters Count
+-CDCCounters
—I~Clocks
STMClock 79982kHz
CPUClock T9982kHz
MCDSClock 79982kHz
SRIClock 159964kHz

Figure 39: Sample TriCore Plugin View (MCDS and CPU running at 80MHz, i.e. Cycle Duration is 12.5ns)

In addition, the AGBT interface to be configured. The parameters are:
- Number of lanes: How many AURORA Lines are used for the AGBT interface. Most AURIX
devices support only 1 AURORA lane.
- Baudrate: Most AURIX devices support a bitrate of either 1.25Gbps or 2.5Gbps. If possible,
select the higher bitrate to allow for a maximum trace bandwidth.
- Generate clock: This parameter is ignored for AURIX devices.

34 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

CPU Setup

CPU1 CPU2
Reset Debugaing Analyzer Aurara SoC Advanced SoC]

Mumber of lanes 1

Baudrate 2.5 Gbps

1,25 Gbps

[Jzenerate dodk

Figure 40: AGBT Interface Configuration (Number of Lanes, Baudrate)

223 winIDEA Trace Analyzer Configuration

You can either create a new trace configuration for this trace use-case, or you can derive it from an
already existing configuration, e.g. from OS profiling configuration described in section 2.1.

A-rrmlEaana
Default

0S_ORTI

1 Create New Configuration...
|ﬁ Edit Analyzer Configuration List...

Analyzer Configuration List ot
1 MNew “f Edit =l Rename || =b Set Active || (] ani % Delete
(&) [P Default .

= & OS5 _ORTI

Enter ltem MName >

Mame |PFT_CPU_0_2_0S_CORT]|

Corcel

Figure 41: Derive a new winIDEA Analyzer Trace Configuration from an existing Configuration

A trace configuration for OS task and ISR2, as a full program trace profiling of two cores (CPUO and
CPU2), could, for instance, look like depicted in Figure 41. The configuration should have a descriptive
name, enabled Profiler Analysis and enabled Manual Hardware Trigger Configuration.

35 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Figure 42 shows the MCDS configuration corresponding to the POB/BOB connectivity described in
Figure 35.

Trigger - [Advanced Coverage Trigger]

MCDS TriCore X TriCore¥ SRI SPB MCX IfOModule iNET

Trigger
Trigger Position End w
MU
Which SRI slave is seen by SRI1 CPUZ (PSPR,DSPR...) w
Which SRI slave is seen by SRI2 CPU2 (PSPR,DSPR...) w
Which processor core is seen by POB X |CPUD w
Which processor core is seenby POBY |CPU2 w
Time stamps
Assume source tobe | tick w
Reference dock Main PLL w

Mote: configure cyde duration in
Hardware/CPU Setup/Debugging

Options
L Mote: enabling this option, will disable the
Enable trace during CPU reset trigger {MC¥/trace_done is set to NEVER)
o MNote: enabling this option, will disable UWS
Continuaus mode and force MCX/trace_done to NEVER,

Figure 42: POB/BOB MUX and Timestamping Configuration

Trigger:
The “Trigger Position” setting is not relevant in this case, as we will use DAP Upload-While-Sampling.

MUX:

The BOB_SRI and POB X and Y MUXes are set in the following way:
e BOB_SRI1: CPU2 (PSPR, DSPR...), i.e. connected to the SRl interface of the CPU2 local memory.
e BOB_SRI2: CPU2 (PSPR, DSPR...), i.e. connected to the SRl interface of the CPU2 local memory.
e POB X: CPUQ, i.e. connected to CPUO
e POBY:CPU2, i.e. connected to CPU2

Time stamps:
TICK time stamping is used (“Assume source to be tick”).
In this case, the value entered for TSUPRSCL and also the “Reference clock” selection is irrelevant.

Options:
No additional options need to be enabled.

36 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Figure 43 shows the required POB X configuration (POB X is connected to CPUOQ).

Trigger - [Advanced Coverage Trigger]

McDs TriCore X Tricore ¥ SRI SPB MCX

Action (double dick to edit)

decu_enable -
deu_sync -
dtu_wdat -
dtu_wadr -
dtu_radr -

ptu_nesting -
ptu_sync -
otu_enable -
otu_sync -
wiu_enable_0 -
wiu_enable_1 -
wiu_enable_2 -
wiu_enable_3 -
wiu_enable_4 -
wtu_enable_5 -
wtu_enable_6 -
wiu_enable_7 -
tc_act_0 -
tc_act_1 -
tc_act_2 -
tc_act_3 -
tsu_rel -

tu_enable ALWAYS

If0OModule iNET

Event (double dick to edit)

EVT1 -
EVTZ -
EVT3 -
EVT4 -
EVTS -
EVTe -
EVT7 -
EVTE -
EVT9 -
EVTi0 -
EVT1i1 -
EVTiZ -
EVT13 -
EVT14 -
EVT15 -

FTU_TC program trace enable

Advanced...

7 Wizard... “1] Create Template...

Figure 43: POB_X Configuration to trace the Program Flow of Core 0

Trigger: not used
Event: not used
Action:

Trigger {double dick to edit)

~

core_trigd

core_frigl

core_frig2

core_trig3

core_trigd

core_rig5

core_trigs

core_trig?7

core_tr0evt

core_frlevt

core_exevt

core_swevt

core_ea_fine

ptu_trig_0 ALWAYS

ptu_trig_1 ALWAYS

ptu_trig_2 ALWAYS

ptu_trig_3 ALWAYS

ptu_trig_4 ALWAYS

ptu_trig_5 ALWAYS

otu_trig_0 ALWAYS

otu_trig_1 ALWAYS

otu_trig_2 ALWAYS

dtu_ea_trig_0 ALWAYS

dtu_ea_trig_1 ALWAYS

dtu_ea_trig_2 ALWAYS

dtu_ea_trig_3 ALWAYS

dtu_ea_trig_4 ALWAYS

dtu_ea_trig_5 ALWAYS

dtu_ea_trig_6 ALWAYS

dtu_ea_trig_7 ALWAYS

dtu_dat_trig_0 ALWAYS

dtu_dat_trig_1 ALWAYS

dtu_dat_trig_2 ALWAYS

dtu_dat_trig_3 ALWAYS

dtu_acc_wr

deu_ace_rd W
e

e ptu_enable: ALWAYS (unconditional program flow trace)

37 of 51

www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

How to handle Program Flow Trace Overflows?
For program trace on CPU2, a first attempt also used unconditional program trace, i.e. ptu_enable =
ALWAYS. However, this trace configuration generated immediate AGBT trace buffer overflows. Further
analysis reveals that the root cause for the overflow is the execution of a short software loop, while
the OS idle task is running on CPU2. This software loop is implemented in the OS function
“Os_Hal_CoreFreeze”.
Such short software loops are generally rather “trace unfriendly” as they generate program trace
message at a high rate and therefore tend to overflow trace buffer/interfaces.
As shown in Figure 44 the “Os_Hal_CoreFreeze” function implements a simple wait loop by jumping
to itself. Each jump generates a program trace message (IPI_C message).

B = ¥ | T ¥ |Ds_HaI_CoreFreeze |

Mumber Address Data Content Time SourcelD
27.7 G000"0E6L| 0000003C|"0s_Hal Cors.c™::143 512 ns FTU_TCK
0s_Hal CoreFreeze
3C00 j 0s_Hal CoreFfreeze (80000E6RL)

IFI C (corelD=FTIU TICK, bytes=0x0]
c tick () 525 n PTU TCX
28.0 8000"0E6A| 0000003C|"0s_Hal Core.c™::143 FIU_TICKE
0s_Hal_ CoreFreeze

3C00 3§ 0s_Hal CoreFreeze (S0000EGR)

IFI_C (corelD=FTU_TCE, bytes=0x0)

tick ()

Figure 44: Program trace recording of the software loop implemented in “Os_Hal_CoreFreeze”.

In order to avoid these overflows, we can either add NOP instructions within the loop (to reduce the
trace message generation rate) or we exclude this software loop of the Idle task from the program flow
trace. Modification of the source code is often not possible, so we go for the option excluding the loop
from program trace. In other words, the POB connected to CPU2 is configured in a way that it generates
program trace messages for all code areas, except when the core executes code of the function body
of the function “Os_Hal_CoreFreeze”.

A magnitude (i.e. address range) compactor of the POB is used to generate a trigger when the CPU
instruction pointer (address of executed instruction) falls into the address range of
“Os_Hal_CoreFreeze”.

Qs Hal CoreFreeze

Trigger *

X |DS_HE|_CDFEFFEE2E | Canicel

Entire Object
Y

TITTT == T =F O™

Figure 45: PTU address range trigger covering the “Os_Hal_CoreFreeze” object.

The trigger (ptu_trig_0) is mapped to event EVTO and inverted (NOT). Thus, the Event is active while
the CPU executes instruction outside of the “Os_Hal_CoreFreeze” function body.

38 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Event (double didk to edit) Tri

EVTD !ptu trig O ﬁ

Event

Enabled

MNOT Trigger
|:| core_crevt

|:| core_trigl
|:| core_frigl
[Mptu_trig_0 | [Os_Hal_CoreFreeze]
Figure 46: ptu_trig_0 is mapped to EVTO and inverted (NOT)

Finally, the event EVTO is mapped to the Program Trace enable action (ptu_enable).
While (Level = State) the event EVTO is active (Qualifier = Active), program trace is enabled.

Action (double dick to edit)

dcu_enable -
dou_sync -
dtu_wdat EVT11 | EVT10
dtu_wadr EVT11 | EVT10
dtu_radr -
tu_enable EVTO
Action

Qualifier Level Event
IF | Active = State = EVTO =
OR |NEVER ~ | |Edge EVTO
OR |[NEVER | |Edge EVTO
OR |NEVER ~ | |Edge EVTO

Figure 47: Enabling Program Trace while EVTO is active.

39 of 51
www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

Figure 48 shows the required POB Y configuration (POB Y is connected to CPU2).

Trigger - [Advanced Coverage Trigger] %

MCDS TriCoreX TriCoreY SRI SPE MCX I/OModule iNET

Action (double dick to edit) Event (double dick to edit) Trigger {double dick to edit)
deu_enable - core_crevt ~
deu_sync - EVT1 - core_trigd
dtu_wdat EVT11 | EVT10 EVvT2 - core_trigl
dtu_wadr EVT11 | EVT10 EVT3 - core_trig2
dtu_radr - EVT4 - core_trig3
tu_enable EVTO EVTS - core_trig4
ptu_nesting - EVTe - core_trig5
plu_sync - EVT7 - core_trigs
otu_enable - EVTE - core_trig7
otu_sync - EVTS - core_trlevt
wiu_enable_0 - EVT10 dtu_ea_trig_2 core_trilewt
wiu_enable_1 - EVT1l dtu_ea_trig_3 core_exevt
wiu_enable_2 - EVT12 - core_swevt
wiu_enable_3 - EVT13 - core_ea_fine
wh_enble 4 - EVT14 -
whu_enable_5 - EVT15 - ptu_trig_1 ALWAYS
wiu_enable_& - ptu_trig_2 ALWAYS
wiu_enable_7 - ptu_trig_3 ALWAYS
tc_act 0 - ptu_trig_4 ALWAYS
tc_act_1 - ptu_trig_5 ALWAYS
tc_act 2 - otu_trig_0 ALWAYS
tc_act_3 - otu_trig_1 ALWAYS
tsu_rel - otu_trig_2 ALWAYS
dtu_ea_trig_0 ALWAYS
dtu_ea_trig_1 ALWAYS
dtu_ea_trig_2 [{OsCfg_Trace_OsCore_Core2_Dyn).Curre
dtu_ea_trig_3 [(OsCfg_Trace_OsCore_Core2_Dyn).Curre
dtu_ea_trig_4 ALWAYS
dtu_ea_trig_5 ALWAYS
dtu_ea_trig_& ALWAYS
dtu_ea_trig_7 ALWAYS
dtu_dat_trig_0 ALWAYS
FTU_TC program trace enable dtu_dat_trig_1 ALWAYS
dtu_dat_trig_2 ALWAYS
Advanced... dtu_dat_trig_3 ALWAYS
dtu_acc_wr
deu_acc_rd Y]
Ve Wizard. . %1 Create Template... Cancel Help

Figure 48: POB_Y Configuration to trace the Program Flow and Data Write Accesses to the OS Objects of Core 2

Trigger:

e Two magnitude comparators (address range comparators) of the Data Trace Unit (DTU) of the
POB generate a trigger when CPU2 access the corresponding CurrentTask (Running Task) and
Currentlsr (RunningISR2) variables of the OS.

e A magnitude comparator (address range comparator) of the Program Trace Unit (PTU) of the
POB generates a trigger when CPU2 executes an instruction located in the address range
covered by the function “Os_Hal_CoreFreeze”.

Events:
e Trigger dtu_ea_trig_2 is mapped to EVT10.
e Trigger dtu_ea_trig_3 is mapped to EVT11.
e Trigger ptu_trig_0is inverted (!) and mapped to EVTO.

Actions:
e EVT10 or EVT11 both cause capturing (by DTU) the Write Access Data (dtu_wdat) and Write
Access Address (dtu_waddr).
e EVTOis mapped to Action ptu_enable, i.e. program trace is enabled while EVTO is true, i.e. the
CPU executed instruction located outside of the function body of function
“Os_Hal_CoreFreeze”.

40 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Figure 49 shows the required BOB_SRI configuration. In this configuration the Data Trace Unit 1 (DTU1)
of the BOB_SRI is used to trace the CurrentTask and Currentlsr object of CPUO, DTU2 is used to trace
the CurrentTask and Currentlsr object of CPU1.

Trigger - [Advanced Coverage Trigger] X
MCDS TriCore ¥ TriCoreY SRI SPB MCX IfOModule iMET
Action (double dick to edit) Event (double dick to edit) Trigger {double dick to edit)
deu cnable =
deu_sync - EVT1 dtul_ea_trig_1 dtu2_ea_fine
dtul_wdat EVTO | EVT1 EVvT2 - dtul_ea_trig_0 [(0sCfg_Trace_OsCore_Cored_Dyn).CurrentT|
dtul_wadr EVTO | EVT1 EVT3 - dtul_ea_trig_1 [(0sCfg_Trace_OsCore_Core0_Dyn).Currently
dtul_rdat - EVT4 - diul ea trig 2 ALWAYS
dtul_radr - EVTS - diul ea trig 3 ALWAYS
dtu?_wdat EVT15 | EVT14 EVTE - diul dat_trig 0 ALWAYS
dtu2_wadr EVT15 | EVT14 EVI7 - diul dat_trig_1 ALWAYS
dtu2_rdat - EvTs - dtul dat trig 2 ALWAYS
dtu?_radr - EVTS - diul dat_trig_3 ALWAYS
wiu_enable_0 - EVT10 - dtul_acc_trig_0 Access
wiu_enable_1 - EVT11 - dtul_acc_trig_1 Access
wiu_enable_2 - EVT12 - dtul_acc_trig_2 Access
wiu_enable_3 - EVT13 - dtul_acc_trig_3 Access
wiu_enable_4 - EVT14 dtu2_ea_trig_0 dtu2_ea_trig_0 [{0sCfg_Trace_OsCore_Corel_Dyn).CurrentT)|
wiu_enable_5 - EVT15 dtu2_ea_trig_1 dtu2_ea_trig_1 [(0sCfg_Trace_OsCore_Corel_Dyn).Currentls
wiu_enable_& - dtu2_ea_trig_2 ALWAYS
wiu_enable_7 - dtu2_ea_trig_3 ALWAYS
sri_act_0 - diuZ_dat_trig 0 ALWAYS
sri_act_1 - diuZ_dat_trig_1 ALWAYS
sri_act_2 - dtu2_dat_trig_2 ALWAYS
sri_act_3 - diuZ_dat_trig_3 ALWAYS
sri_act_4 - dtu2_acc_trig_0 Access
sri_act_5 - dtu2_acc_trig_1 Access
sri_act_6 - dtu2_acc_trig_2 Access
sri_act_7 - dtu2_acc_trig_3 Access
tsu_rel - deu_ei
deu_sus
deu_err
sri_trig_0
sri_trig_1
sri_trig_2
DCU_SRI status trace enable sri_trig_3
. o
ré Wizard... 1l Create Template.. Cancel Help

Figure 49: BOB_SRI Configuration to trace Data Write Accessed of Cores 0 and 1 to the corresponding OS
Objects

Trigger:
e Two magnitude comparators (address comparators) generate a trigger when CPUO/1 access

the corresponding CurrentTask (Running Task) and Currentlsr (RunningISR2) variables of the
OsS.

Configuration of dtul_ea_trig_0 (Running Task):
Trigger >

X |re_CoreD_D\,rn).CurrentTasH| Cancel

Entire Object

Configuration of dtul_ea_trig_1 (Running ISR2):
Trigger x

“ore_Core0_Dyn).Currentsr | Cancel

X

Entire Object

DTU2 is configured accordingly.

41 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

e Trigger dtul_ea_trig_0is mapped to EVTO.
e Trigger dtul_ea_trig 0 is mapped to EVT1.
e Trigger dtu2_ea_trig_0is mapped to EVT14.
e Trigger dtu2_ea_trig_0is mapped to EVT15.

Actions:
e EVTO or EVT1 both cause capturing (by DTU1) the Write Access Data (dtul_wdat) and Write
Access Address (dtul_waddr).
e EVT14 or EVT15 both cause capturing (by DTU2) the Write Access Data (dtu2_wdat) and Write
Access Address (dtu2_waddr).

42 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

Figure 50 shows the MCX configuration required to use TICK time stamping.

Trigger - [Advanced Coverage Trigger] %

MCDS TriCore X TriCore¥ SRI SPB MCX iNET

Action (double dick to edit) Event (double dick to edit) Trigger (double dick to edit)
tsu_rel_en - ~ "
tsu_rel_sync - EVT1 - fifo_trg_0
tsu_abs_en - EvT2 - fifo_trg_1
tsu_abs_sync - EVT3 - tsu_tc_trig
wiu_enable_0 - EVT4 - tox_act_0
wiu_enable_1 - EVTS - tox_act_1
wtu_enable_2 - EVTE - tox_act_2
wiu_enable_3 - EVI7 - tox_act_3
wiu_enable_4 - EVTE - toy_act_0
wiu_enable_5 - EVTS - toy_act_1
wtu_enable_& - EVT10 - toy_act_2
wiu_enable_7 - EVT11 - toy_act_3
wiu_cnt_0 - EVT12 - spb_act_0
wiu_cnt_1 - EVT13 - spb_act_1
wiu_cnt_2 - EVT14 - spb_act_2
wiu_cnt_3 - EVT15 - spb_act_3
wiu_cnt_4 EVT16 - sri_act_0
wiu_cnt_5 EVT17 - sri_act_1
wiu_cnt_6 EVT18 - sri_act_2
wiu_cnt_7 EVT19 - sri_act_3
wiu_cnt_8 EVT20 - sri_act_4
wiu_cnt_9 - EvT21 - sri_act_5
wiu_ent_10 - EVT22 - sri_act_6
wiu_ent_11 - EVT23 - sri_act_7
wiu_cnt_12 - cnt_trig_0
whu_cnt_13 - ont_trig_1
whu_cnt_14 - cnt_trig_2
wiu_cnt_15 - cnt_trig_3
cnt_trig_4
trace_done - ont_trig_5
break_out w ont_trig_&
I ant_trig_7
enable tick message generation by DMC cnt_trig_8
cnt_trig_9
Advanced. .. ont_trig_10
cnt_trig_11
ont_trig_12 v
Ve Wizard... 1 Create Template... Cancel Help

Figure 50: MCX Configuration to generate TICKS for Time Stamping and Upload-While-Sampling

As a final stage of the trace configuration the Recorder, i.e. iC5700, properties need to be set. In this
use-case we immediately start trace recording.
Figure 51 depicts the corresponding Recorder settings.

Analyzer Configuration - [PT_CPU_0_2_ 05 ORTI] >

Hardware Profler Coverage

Analysis and Configuration

Profiler
|:| Coverage

Manual Trigger fRecorder configuration Configure... Preset =

FMet Operation. ..

Options
DReactivate session after CPU stop

Property Value
= Recorder
Start Trigger Immediately
Recording Size Limit 1GE
Trigger Posttion Begin
Timer Interpolation 1

Generate time synchronization messages [

Figure 51: Analyzer Configuration for immediate Trace Recording

43 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

2.2.4 winIDEA Profiler Configuration

In order to make winIDEA and the winIDEA Profiler aware of the AUTOSAR OS running on the target
the so-called ORTI file, generated by the AUTOSAR generation tool, needs to be imported into winIDEA.
This is done via the menu “Debug — Operating System...”.

When importing the AUTOSAR ORTI file via the “New...” button, the OS type “OSEK AUTOSAR” has to
be selected (see Figure 52). Afterwards you can give the OS awareness some descriptive name. In our
example shown in Figure 53, the ORTI file has the name “Os_Trace.ORT”. As the AUTOSAR OS used in
this example is a Vector Microsar OS, we name the OS-awareness the name “Microsar ORTI”.

Operating system *

Operating System

New... [

OSLinuwx
L4ReDS
PikeOS
freeRTOS RTOS
OSEK AUTOSAR
¥

Figure 52: Creating of a new OSEK AUTOSAR 0S Avs./arenss

< Edit opticns

Operating System

Froperty Value
New... =1 Configuration
RTOS description file type ORTI
Configure RTOS description file location Os_Trace. ORT
Rename...

Figure 53: Selection of the AUTOSAR ORTI File (in this example the file “Os_Trace.ORT”)

A “Download” or “Symbol Download” operation also reads in the ORTI file.
Subsequently, the winIDEA Profiler can be configured to utilize the information given by the ORTI file.
As shown in Figure 53, the profiling of “OS objects” needs to be enabled.

44 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

|
Hardware Profiler Coverage 1T
Profile :
RTOS Profiler Options >
Code
Advanced...)
Operating System
[]pata ;
Micorsar ORTI e
05 objects 05 Setup... Ib
Ohjects to profile
[]ausx TASKz.Corel Py
[~]TASKs. Corel
Metwark []Passpaint [« TASKs, Core2
[«]15R.25.Corel
Code Areas [«]15R.25.Corel
| Enter filter string(s) [AISR2s. Core2
[JCore 0: SERVICETRACE[0] o
Object Info:
Mame: RUNMINGTASK[O]
Definiton: RUMMINGTASK]O]
Description: TASKs, Corel
Signaling: (OsCfg_Trace_OsCore_Core0_Dyn).Current
Data Areas

Figure 54: “OS Setup...” Configuration of the Analyzer — Profiler Dialog

Pushing the “OS Setup...” button opens the “RTOS Profiler Options” dialog. The name of the Operating
Systems corresponds to the name that was given via the “Debug — Operating System...” dialog, when
selecting the ORTI file.

All OS objects described by the ORTI are listed under “Objects to profile”. One or multiple objects can
be selected for profiling. The sub-window “Object Info:” provides more detailed info of a selected
object, such as the Name given in the ORTI file and the type of signaling.

In the example shown in Figure 54 the ORTI object RUNNINGTASK[O], i.e. the Running Task on CPUO,
is signaled via the global variable Os_Cfg_Trace_0OsCore0_Dyn.CurrentTask. As described in the section
2.1.2 these are the global variables which need to be observed via Data Trace.

In addition to OS objects, also the entire code shall be profiled. This requires the following
configurations.

The “Profile — Code” option needs to be enabled and also a Code Profiler Operation mode needs to be
selected.

45 of 51 Application Note
www.isystem.com

AURIX Trace Overview and Use-Cases

In general, the following function profiling modes are supported:

Operating Concepts Description
Mode
Function Profiling in Entry/Exit mode also recognizes function nesting.
Nesting
If a preemptive Operating System (OS) is used, it is required to also
Operating | signal and profile the context switches of the OS.
Entry/Exit System The profiler basically maintains a function call stack for each
recognized OS context.
Compiler Entry/Exit mode profiling does not cater for function exit
L optimizations, i.e. function exit optimizations may vyield this
Optimization -
profiling mode unusable.
Function Profiling in Flat mode does not recognize function nesting. It
Nesting assume a valid entry/exit sequence for each function.
Flat Operating In Flat mode it is not necessary to also profile the context switches
System of an OS.
Compiler Flat mode profiling is not affects by compiler optimizations.
Optimization
Function Profiling in Range mode also recognizes function nesting.
Nesting
If a preemptive Operating System (OS) is used, it is required to also
Operating | signal and profile the context switches of the OS.
Range System The profiler basically maintains a function call stack for each
recognized OS context.
Compiler Range mode profiling performs an in-depth analysis of the code
o trying to recognize and compensate compiler optimizations, such
Optimization . . S
a function tail optimizations.
46 of 51 Application Note

www.isystem.com

AURIX Trace Overview and Use-Cases

Hardware Profiler Coverage

Profile
Code
Advanced...
[Noata
05 objects 05 Setup...
[Jaus

[Inetwork []rasspoint

Code Areas

Analyzer Configuration - [PT_CPU_0_2_0O5_ORTI]

Operation mode

Trigger at

(Default) w

Analyze only events after trigger point

Limit session duration 1000 |ms

[J1gnore unknown functions / variables

EntryExit

Flat

| Enter filter string(s)

Data Areas

Figure 55: Profiler Configuration of OS Profiling and Code (Function) Profiling

47 of 51

Mew...
Edit. ..

Remave

Select All..

Mew =
Edit...

Remove

www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

2.2.5 winIDEA Profiler View

Figure 56 and Figure 57 show the resulting profiler timeline. The “Code” section shows the profiler
timeline of functions, the “Data” section displays the timeline of the OS tasks and ISR2s.

Profiler Timeline + x

G- R Dol A8 FRAR A Total 1001 s
E 100ms 200ms 300ms 400ms 00ms 0oms Tooms e00ms s00ms Y
History T A

Code [Neutral]
- f& *Os_Spinlock.c#" . cocofun_3
Os_Event.c#" . cocofun_13
*Os_Counter.c#".cocofun_26
*0s_Counter.c#".cocofun_25
"0s_Trap.c#".cocofun_8
*0s_Isr.c#".cocofun_10
"0s_Scheduler.c#".cocofun_7
“0s_Spinlock.c#".cocofun_11
*0s_Spinlock. c#". cocofun_1
- f& Os_Api_GetCoreID pInmn
£ "0s_Event.c#". cocofun_18

BRERRRRRE

LCNIC LI RN T Ty I ETE I TIEREE A LI T TR T A RN T AT LIE LI LT AT VT EI LI TR I I T A
TRV o g nwmm i mmennn
L T |
e e e |
IO LTL I ANTINE VR CRCTON ToqR YICARE TN CATR TONT (YR TR AR TONE TRVE (LIRS TONR VR VC TN UL TONT VAR TR TR TORC TRNRTCUL T TTATTETR VUL ACATIAT (198 AN TERE VL LN e
IEETRETTEE R TEEUEEEEEEETEEE R eennne i
T o mwmm ey
AR A A A A I A A R RN A NN AR AN NN RN TR AN TN
R L A A A AN A A AR TN A TR A TN
Hinnrnnnnnn
QUL ONPTA O AR NP LTI TR EC NIV IR TR TAR AT UL LT AR U PR TR AU O U

Data
=1 TASKs . Cored

History

sy

M App_Task_PlausCheck_Cyclic_1
- 10 App_Task_PlausCheck_Cyclic_2
- Ml IdleTask_C@

B SchM_Task_ce

M Unknown_CORE_8
"] TASKs.Corel

~ Wl App_Task_Calc_Cyclic_2 | | | |
1 App_Task_Calc_Cyclic_3
-l IdleTask_C1

B SchM_Task_C1

18] Unknown_CORE_1

1 App_Task_Calc_Cyclic_1 (1 T Y T Y I IO |

'] TASKs.Core2
B App_Task_OutputProc_Cyclic_L
M App_Task_OutputProc_Cyclic_2 I
- M TdleTask C2!
~ Ml SchM_Task_C2
Wl Unknown_CORE_2
= If'] ISR2s.Coreq

Figure 56: Sample Timeline of a dual-core OS (task and ISR2) and Code (Function) Profile

Profiler Timeline

@-F RE| 2]l R 3R QAA A

ms

1?1Ims

Code [Meutral]
- f&, Rte_Write_ct_Calc_BrakeActSetpoint
-~ & Rte_Write_ct_Calc_BrakeActSetpoint
é, Rte_Write_ct_Calc_BrakefctSetpoint
S5 Rte_Write ct Calc_BrakeActSetpoint
é, Rte_Write_ct_Calc_BrakelightSetpoi
- f& Rte_Write_ct_Calc_BrakelightSetpoi
& Rte_Write_ct_Calc_ThrottleSetpoint
g, Rtm_CpulLoadMeasurementFunction
&, Rtm_MainFunction
- fi& "Rtm_CFg.c#".cocofun_3
é, "Rtm_Cfg.c#".cocofun_4
J& "Rtm_Cfg.c#".cocofun_5
é, "Rtm_Cfg.c#".cocofun_9
- f& Rtm_MainFunction_@
- f& Rtm_MainFunction_2

History

Data History

- It* TASKs.Core@
It"1 TASKs.Corel

E-J7] TAsSKs.Core2
~ [App_Task_OutputProc_Cyclic_ 1
- 1 App_Task_OutputProc_Cyclic_2
- i IdleTask_C2
I SchM_Task_C2
- i Unknown_CORE_2
- If* ISR2s.Cored

—

—

-1 ISR2s.Corel
O} 1<

—_—T T

- 18 INVALID_ISR_CORE_2
- 1 CounterIsr_OsCounterC2

Figure 57: Zoomed-In section of the sample Profiler Timeline shown in Figure 56

(Profiler Operating Mode = Range)

48 of 51

www.isystem.com

_--—

Application Note

AURIX Trace Overview and Use-Cases

2.3 Function Specific Program Trace

Full program flow trace might not be feasible in situations where an AGBT trace interface is not
available. In these situations, Function-Specific Program Trace can give insight into the behavior of a
specific function. We can avoid overflowing the trace buffer by cleverly configuring the trace buffer
while still getting sufficient Program Trace to resolve an issue.

Let’s say we want to record the function cO_RunA and all its subfunctions. First, we pick a POB for our
analysis, in this case, POB X. We map POB X to Core 0 because that’s where our function executes.
Then, we configure two events, EVTO and EVT1, for the entry and exit point of the function. The events
create a cross-trigger action that the MCX receives (see 1 in Figure 59).

In the MCX menu, the events from POB X increment and clear a counter. The same counter maps back
to tex_trig_0 via EVT7. Finally, if we go back to Figure 58, we use that trigger to enable the program
trace.

To summarize, we increment a counter at the beginning of our function of interest and decrement it
at the exit. Whenever the counter is active, meaning non-zero, it enables Program Trace. That has the
effect that we record the function, as well as all its subfunctions.

Trigger - [Trigger Configuration] X
Recorder Action (double dick to edit) Event (double dick to edit) Trigger (double dick to edit)
MCDS dou_enable = EVT0 _phu_trig 0 "
dou_sync - EVT1 ptu_trig_1 core_trigD
dtu_wdat EvVT2 - core_trigl
Tricare ¥ dtu_wadr EVT3 - core_trig2
. diu_rdat EVT4 - core_trig3
Tricore Z dtu_radr - EVTS - core_trig4
SRI ptu_enable EVTS EVTE core_trig5s
ptu_nesting - EVT7 core_trige
SPB ptu_sync EVT8 - core_trig7
MCX otu_enable EVTS tc_trig_0 core_trdevt
otu_sync EVT10 - e core_trievt
wiu_enable_0 EVT11 - core_exevt
wiu_enable_1 EVT12 - core_swevt
wiu_enable_2 EVT13 N core_ea_fine
wiu_enable_3 EVT14 ptu_trig_0 IP == c0_RunA
wiu_enable_4 EVT15 phu_trig_1 IP == c0_RunA_EXIT_
wiu_enable_5 ptu_trig_2 ALWAYS
wiu_enable_g ptu_trig_3 ALWAYS
wiu_enable_7 - ptu_trig_4 ALWAYS
tc_act_0 “EVTO ptu_trig_5 ALWAYS
to_act 1 SEVTL otu_trig_0 ALWAYS
te_act_2 - otu_trig_1 ALWAYS
tc_act_3 otu_trig_2 ALWAYS
tsu_rel dtu_ea_trig_0 ALWAYS
dtu_ea_trig_1 ALWAYS
dtu_ea_trig_2 ALWAYS
dtu_ea_trig_3 ALWAYS
dhu_ea_trig_4 ALWAYS
dtu_ea_trig_5 ALWAYS
diu_ea_trig_6 ALWAYS
dtu_ea_trig_7 ALWAYS
diu_dat_trig_0 ALWAYS
DCU_TC status trace enable dtu_dat_trig_1 ALWAYS
dtu_dat_trig_2 ALWAYS
Advanced. ., dtu_dat_trig_3 ALWAYS
dtu_acc_trig_0 Access
dtu_acc_trig_1 Access w
Z Wizard... %10 Create Template.. Cancel Help

Figure 58: We use function entry and exit triggers to increment and clear an MCX counter. We can then use the
MCX counter to enable Program Trace.

49 of 51

www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

Trigger - [Trigger Configuration]

Recorder
MCDS
Tricore X
Tricore ¥
Tricore Z
SRI

SPE

Wizard...

x

Action {double dick to edit) Event (double dick to edit) Trigger (double dick to edit)
wiu_enable_2 - EVTO - break_in -
wiu_enable_3 - EVT1 tox_act_0 o fifo_trg_0
wiu_enable_4 - EVT2 tocx_act_1 fifo_trg_1
wiu_enable_5 - EVT3 - teu_tc_trig
wiu_enable_§ - EVT4 - tox_act_0
wiu_enable_7 - EVT5 - tox_act_1
whu_cnt_0 - box_act_2
whu_cnt_1 - nt_trig_1 tox_act_3
whu_cnt_2 - EVT8/ -
whi_cnt_3 - E -
whu_cnt_4 - 10 -
wiu_cnt_5 - 11 -
whu_cnt_6 - EVT12 -
wiu_cnt_7 - EVT13 -
wiu_cnt 8 - EVT14 -
wiu_cnt_9 - EVT15 -
wiu_cnt_10 - EVTi6 -
wiu_cnt_11 - EVT17 -
wiu_cnt_12 - EVT18 -
wiu_cnt_13 - EVT1S -
whu_cnt_14 - EVT20 -
wiu_cnt_15 - EVT21 -
tick_enable ALWAYS EvT22 -
trace_done ALWAYS EVT23 -
break_out -
suspend_out -
tox_trig_0 EvT7
box_trig_1 - e
box_trig_2 -
tox_trig_3 -
tox_evt_0 - -]
P
T5U emulation dock time stamp enable cnt_trig_4 -

cnt_trig_5 -

Advanced. .. cnt_trig_& -
cnt_trig_7 -
cnt_trig_8 - W
%1 Create Template... Cancel Help

Figure 59: We use the entry and exit event from POB X to increment and clear an MCX counter. We then provide
the state of the counter back to POB X to enable the Program Trace.

50 of 51

www.isystem.com

Application Note

AURIX Trace Overview and Use-Cases

3 Technical support

3.1 Online resources

Online Help #

winIDEA and testIDEA
online help

Technical Notes ¥

How-tos for winIDEA
functionalities with scripts

3.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

Knowledge Base #

Tips & tricks categorized by
issue type and architecture

Application Notes

How-to notes on advanced
use-cases

Tutorials ¥

From a beginner to an
expert

Webinars ¥

Technical webinars about
ISYSTEM tools with use cases

iISYSTEM has made every effort to ensure the accuracy and reliability of the information provided in
this document at the time of publishing. Whilst iSYSTEM reserves the right to make changes to its
products and/or the specifications detailed herein, it does not make any representations or
commitments to update this document.

© iSYSTEM. All rights reserved.

51 of 51

www.isystem.com

Application Note

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

