

This document and all documents accompanying it are copyrighted by iSYSTEM and all rights are reserved.
Duplication of these documents is allowed for personal use. For every other case, written consent from
iSYSTEM is required.

Copyright © iSYSTEM, AG.
All rights reserved.
All trademarks are property of their respective owners.

iSYSTEM is an ISO 9001 certified company

Boot-Up Profiling using the ARM System
Trace Macrocell (STM) on a Renesas R-Car
Gen3 SoC
Publish Date: 07/27/2020

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

1 of 33 Application Note

www.isystem.com

Table of Contents

1 Introduction .. 2

1.1 Motivation .. 2
1.2 Trace Concept .. 4

2 R-Car Trace Architecture .. 5

2.1 STM Architecture ... 5
2.2 STM Memory Access .. 7
2.3 On-Chip STM Time Stamp Generation ... 7

3 Function Profiling using STM Trace Instrumentation ... 9

3.1 Code Instrumentation .. 9
3.2 Profiler Visualization .. 10

4 Bootloader Instrumentation for STM Trace ... 11

4.1 Instrumentation of the R7 Initial Program Loader (IPL)... 11
4.2 Instrumentation of an A5x Bootloader, e.g. BL2 ... 12

5 winIDEA Configuration for STM Trace .. 14

5.1 STM Trace into ETF... 14
5.2 STM Trace via HSSTP .. 17
5.3 Analyzer Operation Mode and Trace Time Stamp Cycle Duration 20

6 winIDEA Analyzer Configuration ... 21

6.1 STM Trace Hardware Configuration... 21

7 winIDEA Profiler Configuration & Visualization .. 24

7.1 Function Profiling by means of Data Profiling ... 24
7.2 Function Profiling by means of OS Profiling ... 27
7.3 Visualization ... 32

8 Technical support ... 33

8.1 Online resources .. 33
8.2 Contact ... 33

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

2 of 33 Application Note

www.isystem.com

1 Introduction

This application note describes how to utilize the ARM System Trace Macrocell (STM) for timing
measurement of the boot-up process of complex SoCs, such as the Renesas R-Car family.

1.1 Motivation

Complex SoCs typically run rather complex software architectures. Such SoCs often implement a
mixture of real-time cores, such as ARM Cortex R7 or M7, and clusters of application cores, such as
ARM Cortex A53 or A57. The real-time cores may run an AUTOSAR Classic stack, while the application
cores run an AUTOSAR Adaptive stack, using a POSIX OS such as Linux.
The boot-up process of such system can be quite complex and may involve a mixture of SoC-specific
bootloaders for the real-time core, often used as the master boot core, and various bootloaders for
the application cores implemented according to the ARM Trusted Firmware (ATF) architecture.

Figure 1 shows a sample software architecture running on an R-Car SoC, including the various
bootloader stages. In this example, the R7 core is used as master boot core. The boot-up sequence
comprises the following steps:

1. Upon release from reset the R7 master boot core first executes a ROM-based bootloader,
called Boot ROM. The Boot ROM determines which boot memory is used, e.g. QSPI FLASH,
copies the 1st State Bootloader (R7 Initial Program Loader, IPL) from QSPI FLASH to on-chip
RAM and subsequently branches to the R7 IPL.

2. The IPL, loads the software stack running on the real-time cores, e.g. an AUTOSAR Classic
stack. In addition, it loads the ATF BL2 loader image to RAM, enables an application
processor and triggers it to run the BL2.

3. The BL2 loads the U-Boot, which finally loads the Linux image from some storage device such
as eMMC.

Figure 1: Sample Software Architecture of an R-Car SoC including Bootloader Stages

This boot-up procedure may even be changed or interleaved in order to meet certain system-specific
timing requirements. This can lead to even more complex boot-up sequences. Thus, a good
understanding of the timing behavior and the possibility for measuring the timing is essential for the
optimization and verification of the boot-up process.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

3 of 33 Application Note

www.isystem.com

This application note describes how iSYSTEM trace tools, such as the iC5700 in conjunction with the
winIDEA Trace Analyzer, can be used for the timing analysis of such a boot-up process. The final
result could be a visual representation of the boot process as depicted in Figure 2.

Figure 2: Sample R-Car Boot-up Trace Recording

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

4 of 33 Application Note

www.isystem.com

1.2 Trace Concept

The trace concept is based on utilizing the on-chip hardware trace mechanisms implemented in the
SoC. ARM-based SoCs implement a debug and trace infrastructure according to the ARM CoreSight
architecture. Such an architecture is depicted in Figure 3.

ETM
(I/C)

ETM
(I/D/C)

FIFO FIFO FIFO FIFO

DAP
JTAG
SWD

STM
ETM
(I/C)

Parallel

HSSTP

SWOETR

TPIU

ETB

AXI

Debug Bus

Trace Bus

Cortex-A5x Cortex-A5x Cortex-R7

Figure 3: Generic SoC implementing the ARM CoreSight Debug and Trace Architecture

The ARM CoreSight trace architecture comprises the following components:

Table 1: ARM CoreSight Components

Module Description

Cortex.A5x ETM Cortex-A5x Embedded Trace Macrocell
Provides Instruction and ContextID Trace

Cortex R/M ETM Cortex-R/M Embedded Trace Macrocell
Provides Instruction, Data und ContextID Trace

STM System Trace Macrocell
Data Trace via Instrumentation

ETB Embedded Trace Buffer

HSSTP ARM High Speed Serial Trace Port
Trace Port with 2.5 / 5.0 Gbps Transfer Rate

SWO Serial Wire Output
Asynchronous Single Wire Trace Output Port

SoCs typically use a boot-up concept where one dedicated core is assigned as the master boot core.
This means that only this boot core is operational after reset, whereas all other cores are still held in
reset or not even powered or clocked yet. This typically also implies that the trace logic associated to
each core, e.g. the Embedded Trace Macrocell (ETM) is also not operational yet. Thus, a trace tool is
not able to access and configure the on-chip trace logic of all cores involved in the boot process right
after reset, before the start of the boot process. This means, tracing the boot-up process via ETM
trace would require stopping the cores after they have been released by the boot core, in order to
configure their ETM module. This obviously has a major impact on the boot-up timing.
The STM module can be enabled by the trace tool right after reset and each core can contribute to
the STM tracing (i.e. writing to the STM Stimulus port) as soon as it is operational. Therefore, STM
trace is perfectly suited for this use-case.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

5 of 33 Application Note

www.isystem.com

2 R-Car Trace Architecture

Figure 4 depicts the overall trace architecture of an R-Car Gen3 device. STM trace uses the trace
infrastructure high-lighted in red color.

Cortex-R7

ETM

STM

ETF

Cortex-A53Cortex-A53Cortex-A53Cortex-A57

ETMETMETMETM

ETF

Cortex-A53Cortex-A53Cortex-A53Cortex-A53

ETMETMETMETM

ETF

TPIU

Trace Port

ETF

ETM = Embedded Trace Macrocell
ETF = Embedded Trace FIFO
TPIU = Trace Port Interface Unit

Figure 4: Simplified Chip-Level Trace Architecture of an R-Car Gen3 Device

The trace messages generated by the STM first pass through a FIFO (ETF) and are, optionally,
forwarded to a trace port, e.g. the ARM High-Speed Serial Trace Port (HSSTP). Thus, there are two
options for the storage of the STM trace message, either on-chip in the ETF or off-chip in the
connected trace recording tool.
When storing the STM trace into the ETF, the storage is rather limited (e.g. 4k Byte), but may be
sufficient for the analysis of a boot-up sequence. However, the STM trace can be read out via the
standard JTAG debug interface.
On the other hand, streaming out the STM trace via the HSSTP interface allows a virtually unlimited
trace duration, i.e. the STM trace can be extended to include not only the boot-up process but also
the startup and operation of the OS and application software.

2.1 STM Architecture

The concept behind STM trace is that a core can perform data write transactions to a memory
mapped area of the STM, residing on the AXI bus of the processor. This memory mapped area, called
the Stimulus Port, is divided into multiple so-called Channels (256 bytes per channel, see address
map in Figure 6). A write transaction to such an STM Stimulus Port Channel causes the STM to emit
an STM message via the hardware trace port. The Channel number encoded in the STM message can
be used by the trace recording tool to differentiate between different messages types. An STM
message may contain a data field with a length of up to 64 bits, a timestamp and also a marker to
allow for multi-message protocols, e.g. for sending out strings. This versatility allows for signaling

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

6 of 33 Application Note

www.isystem.com

various types of information and events such as OS task state transitions or for function/runnable
entry/exit signaling, etc.
Figure 5 shows the chip-level architecture STM architecture implemented on Renesas R-Car SoCs. It
illustrates how the STM may be integrated within a System-On-Chip (SoC).

L1 Cache
(Instruction/Data)

AXI (AP Domain)

MMU
TLB

Cortex-A5x

L2 Cache
(Instruction/Data)

L1 Cache
(Instruction/Data)

MMU
TLB

Cortex-A5x

SCU

Cortex-R7
(Lock-Step)

L1 Cache
(Instruction/Data)

I-TCM

D-TCM
MPU

(16 Domains)

AXI (RT Domain)

Extended Stimulus Port

Configuration Registers
&

Basic Stimulus Port

CoreSight APB
Bridge

STM

0xE900.0000

0xE9FF.FFFF

0xEA01.0000
0xEA01.007C

Figure 5: Chip-Level STM Architecture of the Renesas R-Car SoC

The STM actually provides two stimulus ports, the basic stimulus port and the extended stimulus
port. The basic stimulus port is mapped to the ARM peripheral bus (APB) and offers 32 channels. The
extended stimulus port is mapped to the ARM high-speed bus matrix (AXI) and offers 64k channels.
Within each channel, a write access to specific 64-bit aligned address locations triggers the
generation of specific STM message types. For instance, a write access to channel offset address 0x10
is treated as a blocking write bus transaction (guaranteed) and generates a STM message with a data
payload of up to 64 bits and includes a timestamp.
Figure 6 illustrates the channel allocation within a basic and extended stimulus port of a STM. It also
shows the mapping of STM message types to a specific address location within each channel.

Figure 6: The STM Stimulus Ports are divided into multiple Channels.

Extended Stimulus Port

Basic Stimulus Port

STM

...

Channel 2

Channel 0

Channel 1

Channel 65535

Channel 3

...

Channel 0

Channel 1

Channel 31

0x00– x04: Data|Marked|Timestamp|Guaranteed

0x08-0x0C: Data|Marked| |Guaranteed

0x10-0x14: Data| |Timestamp|Guaranteed

0x18-0x1C: Data| | |guaranteed

0x60-0x64: Flag| |Timestamp|guaranteed

0x68-0x6C: Flag| | |guaranteed

0x70-0x74: Trig| |Timestamp|guaranteed

0x78-0x7C: Trig| | |guaranteed

0x80-0x84: Data|Marked|Timestamp|invariant

0x88-0x8C: Data|Marked| |invariant

0x90-0x94: Data| |Timestamp|invariant

0x98-0x9C: Data| | |invariant

0xE0-0xE4: Flag| |Timestamp|invariant

0xE8-0xEC: Flag| | |invariant

0xF0-0xF4: Trig| |Timestamp|invariant

0xF8-0xFC: Trig| | |invariant

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

7 of 33 Application Note

www.isystem.com

2.2 STM Memory Access

The STM stimulus port is mapped into memory accessible by each core of the processor. The STM
memory locations can be accessed via standard data write transactions of the CPU, e.g. store
instructions, without any prior initialization required by the application software. The necessary STM
configuration can be performed by a debug/trace tool attached to the processor via its JTAG debug
interface.
However, in case the system either uses memory protection (MPU) or memory virtualization (MMU),
the STM memory range may not be accessible by any component of the application software. The
underlying OS and/or hypervisor may first need to grant access to the STM hardware.

2.2.1 Memory Virtualization via MMU

The physical address space of the STM stimulus port must be added to the virtual address space of
the context (kernel or user space) which intends to perform data write accesses to the STM stimulus
port. The POSIX compliant system call MMAP() may be used, for instance in Linux OS based systems,
to map the STM hardware memory range into the virtual address space of a user application.

2.3 On-Chip STM Time Stamp Generation

Figure 7 shows a simplified block diagram of the STM time stamping clock generation on the Renesas
R-Car devices. The so called Generic Counter of the Application Processor sub-system provides the
32-bit time stamp value used by the Embedded Trace Macrocells (ETM) of all on-chip processors and
the System Trace Macrocell (STM). The Generic Counter is driven by the clock generated from the
external crystal. The crystal clock is divided by 2 before feeding the Generic Counter. Driving the
Generic Counter directly from an external crystal ensures that trace time stamping remains
operational also in low-power modes which typically disable on-chip clock generators such as PLLs.

ETMETMETM

Appliation Processor Sub-System

Generic
Counter

ARM Core Sight Components

1/2
A53 Clusters A57 Clusters

ETM

STM

Figure 7: Simplified Block Diagram of the STM Time Stamp Clock Generation

Sample STM Time Stamp Clock Configuration:
Figure 8 shows a winIDEA Special Function Register (SFR) window listing the MODEMR Register of the
RESET Module, relevant to derive the STM time stamp clock. The MODEMR register bits MD13,
MD14, MD17 and MD19 can be used to derive the frequency of the external crystal. This information
is needed to set the correct “Cycle Duration” in the “Hardware – CPU Options… - Analyzer” dialog.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

8 of 33 Application Note

www.isystem.com

=> XTAL Frequency = 16.66 MHz (see table)

=> Generic Counter Frequency = XTAL / 2

=> Trace Cycle Duration = 1 / Generic Counter Frequency

 Trace Cycle Duration = 1 / (16.66 / 2) = 120 ns

Figure 8: winIDEA Special Function Register Window listing the RST.MODEMR Register relevant for determining
the STM Time Stamp Clock (Trace Cycle Duration)

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

9 of 33 Application Note

www.isystem.com

3 Function Profiling using STM Trace Instrumentation

This chapter gives a generic description about function profiling by means of STM trace
instrumentation.
Function profiling refers to the analysis of the temporal behavior of C-function execution. This
analysis comprises both a statistical analysis as well as the reconstruction of the function call
sequences over time.
Function profiling using STM trace instrumentation is based on marking the entry and exit(s) of a
function. This means that the instrumentation code is added at the entry and at the exit of the
function to be profiled. This instrumentation code writes to the STM Stimulus port and thus causes
the generation of an STM trace message, including a time stamp. The trace message emitted at the
function entry contains a unique function identifier (integer number assigned to this function). The
trace message emitted upon function exit contains the common function exit indicator, i.e. the value
‘0’.

3.1 Code Instrumentation

The code in Listing 1 shows a sample of STM instrumentation for function profiling. The
instrumentation code needs to assign a unique function ID for each function to be instrumented. This
function ID mapping is used by the instrumentation code and also for the Profiler configuration.

isystem_stm_function_ids.h:

/* STM Trace Function IDs */

#define STM_FUNCTION_EXIT (0x00)

#define STM_IPL_LOAD_R7_RTOS (0x50)

isystem_stm_trace_r7ipl.h:

/* SoC-specific Base Address of STM Extended Stimulus Port */

#define STM_ADDR 0xE9000000

/* Offset within Channel to generate Message with Data + Timestamp */

#define STM_OFFSET 0x00000010

/* STM Access Macro. Ch is channel number. */

#define STM32_DTS(ch) *(volatile int*)(STM_ADDR+STM_OFFSET+(ch*0x100))

/* STM Function Trace Instrumentation API (using STM channel 0x300) */

#define STM_TRACE_FUNCTION_ENTRY(value) { STM32_DTS(5) = value; }

#define STM_TRACE_FUNCTION_EXIT() { STM32_DTS(5) = 0; }

R7 IPL tcm_loader_main.c:

#include <isystem_stm_function_ids.h>

#include <isystem_stm_trace_r7ipl.h>

void ipl_load_r7_rtos(void)

{

 STM_TRACE_FUNCTION_ENTRY(STM_IPL_LOAD_R7_RTOS);

 /* … Load the R7 RTOS … */

 STM_FUNCTION_EXIT();

}

Listing 1: Sample Code Listing for Function Profiling by means of STM trace

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

10 of 33 Application Note

www.isystem.com

3.2 Profiler Visualization

Figure 9 shows the STM trace recording corresponding to the sample code of Listing 1. Here, multiple
functions have been instrumented for STM trace. Looking at the function IPL_LOAD_R7_RTOS, you
can see that the function entry (blue cursor, #1) is signaled by an STM trace message using STM
channel 5 (Trace Address column) with a payload data (Trace Data column) of 0x50. The function exit
(yellow cursor, #2) is signaled with an STM trace message using also STM channel 5 and a payload
data of 0x00. The trace timing (Time column) is derived from the time stamp value included in each
STM trace message.

Figure 9: Sample STM Trace recording and Function Profiling Timeline

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

11 of 33 Application Note

www.isystem.com

4 Bootloader Instrumentation for STM Trace

This chapter describes how the function profiling approach, explained in Chapter 3, can be applied
for profiling the bootloaders of an R-Car boot-up sequence. The following section will use the R7
Initial Program Loader (IPL) and the A5x BL2 loader as an example.

4.1 Instrumentation of the R7 Initial Program Loader (IPL)

The R7 IPL source code is available at Renesas.

In the following section we explain a sample R7 IPL STM instrumentation for measuring the time
required for loading the R7 RTOS image.
The header files include\isystem_stm_Ids.h and include\isystem_stm.h define the macros for the
write access to the STM Stimulus port and the IDs for the functions to be profiled (see Listing 2 and
Listing 3).

#ifndef __ISYSTEM_STM_IDS_H__

#define __ISYSTEM_STM_IDS_H__

#define STM_IPL_LOADER 0x0001

#define STM_IPL_HW_INIT 0x0010

#define STM_IPL_DRAM_INIT 0x0012

#define STM_IPL_TCM_LOADER 0x0020

#define STM_IPL_INIT_RPC 0x0030

#define STM_IPL_INIT_DMA 0x0040

#define STM_IPL_LOAD_R7_RTOS 0x0050

#define STM_IPL_LOAD_A5x_BL2 0x0060

#define STM_POWERUP_A5x 0x0070

#endif /* __ISYSTEM_STM_IDS_H__ */

Listing 2: R7 IPL C Header File with Function ID Macro Definitions

#ifndef __ISYSTEM_STM_H__

#define __ISYSTEM_STM_H__

#define STM_EXIT 0

#define STM32_DTS(ch) *(volatile unsigned int*)(0xE9000010 + (ch*0x100))

#define STM_TRACE_R7IPL(value) do { STM32_DTS(0x5) = value; } while(0)

#endif /* __ISYSTEM_STM_H__ */

Listing 3: R7 IPL C Header File with Sample STM Trace Macro Definitions

The actual code for copying the R7 RTOS image from the boot memory to DRAM is located in the C
source file tcm_loader\tcm_loader_main.c. In this particular case, we are not instrumenting one
single function but rather a group of functions which are involved in checking and loading the RTOS
image.

/**

 * Load RTOS from HyperFlash

**/

 STM_IPL_LOAD_R7_RTOS();

 get_info_from_cert(RTOS_CERT_ADDR, &size, &rtos_load_addr);

 if (size == 0U) {

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

12 of 33 Application Note

www.isystem.com

 ERROR("RTOS image size error\n");

 panic();

 } else if (size > RTOS_MAX_SIZE) {

 ERROR("RTOS image size error\n");

 panic();

 } else {

 /* No else processing QAC compliant */

 }

 check_load_area(rtos_load_addr, FLASH_RTOS_IMAGE_ADDR, size);

 execDMA(rtos_load_addr, FLASH_RTOS_IMAGE_ADDR, size);

 STM_IPL_RETURN ();

Listing 4: R7 IPL C Source Code Snippet (tcm_loader_main.c) including STM Trace Instrumentation

After building the instrumented R7 IPL, the new binary image can be programmed into the boot
memory, e.g. QSPI FLASH, by means of winIDEA.

4.2 Instrumentation of an A5x Bootloader, e.g. BL2

The BL2 bootloader is part of the ARM Trusted Firmware (ATF) included in the R-Car Yocto project
(see https://elinux.org/R-Car/Boards/Yocto-Gen3).

The bootloaders for the A5x core can be instrumented for STM trace basically the same way as for
the R7 core. For illustration, we add STM trace instrumentation to the ATF BL2 bootloader.
Listing 5 shows a sample implementation of the header file \include\common\isystem_stm.h.

#ifndef __ISYSTEM_STM_H__

#define __ISYSTEM_STM_H__

#define STM32_DTS(ch) *(volatile unsigned int*)(0xE9000010 + (ch*0x100))

#define STM_TRACE_BL2(value) do { STM32_DTS(0x7) = value; } while(0)

#define STM_EXIT 0x0000

#define STM_BL2 0x0070

#endif /* __ISYSTEM_STM_H__ */

Listing 5: Sample isystem_stm.h Header File for BL2 Instrumentation

Listing 6 shows the listing of the function bl2_main(). The macro STM_TRACE_BL2(STM_BL2) marks
the entry in the function bl2_main(). Marking the function exit is a bit more tricky. The function
bl2_run_next_image() called just before the end of the bl_main() function actually never returns as it
invokes the next bootloader stage. Thus, the bl2_main() function “exit” needs to marked just before
the function call bl2_run_next_image().

#include <isystem_stm.h>

void bl2_main(void)

{

 STM_TRACE_BL2(STM_BL2);

 entry_point_info_t *next_bl_ep_info;

 NOTICE("BL2: %s\n", version_string);

 NOTICE("BL2: %s\n", build_message);

 /* Perform remaining generic architectural setup in S-EL1 */

https://elinux.org/R-Car/Boards/Yocto-Gen3

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

13 of 33 Application Note

www.isystem.com

 bl2_arch_setup();

 /* initialize boot source */

 bl2_plat_preload_setup();

 /* Load the subsequent bootloader images. */

 next_bl_ep_info = bl2_load_images();

 /* … */

 NOTICE("BL2: Booting " NEXT_IMAGE "\n");

 print_entry_point_info(next_bl_ep_info);

 console_flush();

 STM_TRACE_BL2(STM_EXIT);

 bl2_run_next_image(next_bl_ep_info);

}

Listing 6: Sample STM Trace Instrumentation of the BL2 Bootloader Function bl2_main()

After building the instrumented A5x BL2, the new binary image can be programmed into the boot
memory, e.g. QSPI FLASH, by means of winIDEA.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

14 of 33 Application Note

www.isystem.com

5 winIDEA Configuration for STM Trace

This chapter describes the SoC-specific configurations and initialization to be done in the winIDEA
workspace to prepare the SoC for STM Trace.
Two trace options are explained with regards to storage of the trace messages. First we will discuss
STM trace into an on-chip trace buffer, the Embedded Trace FIFO (ETF). The next section will explain
how to stream out to a trace recording tool via a trace streaming interface such as the ARM High
Speed Serial Trace Port (HSSTP).
Such a trace configuration may be sufficient for the timing analysis of only the bootloaders, excluding
the (start-up) of the operating systems and applications.

5.1 STM Trace into ETF

This chapter explains how to use winIDEA to configure the R-Car SoC and the trace tool for STM trace
buffering in the on-chip ETF.
The advantage of this approach is that no dedicated trace hardware is needed. This STM trace data is
stored within the chip and subsequently the trace data can be read our via the standard JTAG debug
interface. The disadvantage is the limited buffer size, thus the trace duration is limited.

5.1.1 Reset Selection & Device Initialization

On R-Car SoCs, the RESET method “Regular” can be used, i.e. the BlueBox asserts the Reset pin.
For tracing into the ETF, the device needs to be initialized before starting a debug/trace session. As
shown in Figure 10 this can be accomplished by executing an iSYSTEM .ini file. The main device
initialization performed in this case is enabling the global time stamp counter for generating the STM
time stamp.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

15 of 33 Application Note

www.isystem.com

Figure 10: winIDEA Hardware – CPU Options Dialog, Settings required for STM Trace into ETF

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

16 of 33 Application Note

www.isystem.com

5.1.2 Trace Capture Method into ETF

In the dialog „Hardware – CPU Options… - SoC” the Trace Capture method needs to be set to ETF (=
Embedded Trace FIFO).
The additional ETF trace settings, i.e. “ETF – Stop trace recording when: “ and the TSGEN related
settings are currently not supported and can be ignored.

Figure 11: Trace into ETF Configuration in winIDEA Dialog “Hardware – CPU Options… - SoC”

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

17 of 33 Application Note

www.isystem.com

5.2 STM Trace via HSSTP

This chapter explains how to use winIDEA to configure the R-Car SoC and the trace tool for STM trace
via the HSSTP trace interface.
The advantage of this approach is that the trace duration is essentially unlimited, as the trace
hardware allows for streaming the data from the HSSTP trace port of the SoC via the HSSTP Active
Probe and the iC5700 BlueBox to the hard drive of the PC. The disadvantage is obviously that a
dedicated HSSTP trace hardware setup is required.
Such a trace configuration is recommended in case the timing analysis (i.e. trace recording) shall not
only cover the bootloaders, but also extend to the (start-up) of the operating systems and
applications.

5.2.1 Reset Selection & Device Initialization

On R-Car SoCs, the RESET method “Regular” can be used, i.e. the BlueBox asserts the Reset pin.
For trace output via HSSTP, the device needs to be initialized before starting a debug/trace session.
As shown in Figure 12 this can be accomplished by executing an iSYSTEM .ini file. The main device
initializations performed in this case are the configuration of a PCIe channel to operate in HSSTP
mode (with a bit-rate of 2.5Gbps) and enabling the global time stamp counter.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

18 of 33 Application Note

www.isystem.com

Figure 12: winIDEA Hardware – CPU Options Dialog, Settings required for STM Trace via HSSTP

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

19 of 33 Application Note

www.isystem.com

5.2.2 Trace Capture Method via HSSTP

In the dialog „Hardware – CPU Options… - SoC” the Trace Capture method needs to be set to HSSTP.

Figure 13: Trace via HSSTP Configuration in winIDEA Dialog “Hardware – CPU Options… - SoC”

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

20 of 33 Application Note

www.isystem.com

5.3 Analyzer Operation Mode and Trace Time Stamp Cycle Duration

For both trace methods described in the previous sections, the winIDEA Trace Analyzer needs to be
aware of the global time stamp counter clock rate. This information is needed to allow the analyzer
to convert the time stamp value, received from the SoC, into an absolute time value.
The “Cycle Duration” calculated according to the description in Section 2.3 needs to be entered in
the dialog “Hardware – CPU Options… - Analyzer”.
In addition, the Analyzer Operation mode needs to be set to “Trace”.

Figure 14: winIDEA Dialog “Hardware – CPU Options… - Analyzer”

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

21 of 33 Application Note

www.isystem.com

6 winIDEA Analyzer Configuration

This chapter describes the required configurations in the winIDEA Trace Analyzer. This involves on
one hand the setup of the SoC trace hardware, i.e. the STM module. On the other hand, the winIDEA
Profiler needs to be configured to allow for a correct and user-friendly interpretation and
visualization of the recorded STM trace data.

6.1 STM Trace Hardware Configuration

It is recommended not to modify the “Default” trace configuration, but instead create a new trace
configuration, dedicated to each individual trace use-case. Figure 15 shows how to create a new
trace configuration.

Figure 15: Create a new Trace Configuration for STM Tracing

In our use-case of STM boot-up profiling, we only need a Profiler analysis of the recorded trace data,
but we don’t need any Coverage analysis.
The “Hardware Trigger Configuration” will be done manually.

Figure 16: New Trace Configuration for manual Trace Hardware Configuration and STM based Profiling

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

22 of 33 Application Note

www.isystem.com

Figure 17 shows the required Trace Recorder (i.e. iSYSTEM BlueBox) settings.

Figure 17: Trace Recorder (BlueBox) Settings for STM Trace into

Figure 18 depicts the required hardware configuration of the STM module.
All other tabs (ETMs and iNET) are not used, i.e. the corresponding hardware modules (e.g. ETMs) are
left disabled.

Figure 18: STM Trace Hardware Configuration

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

23 of 33 Application Note

www.isystem.com

First, we need to enable the STM module. The STM module would allow to mask out certain STM
ports, i.e. channels (for instance for filtering out certain channels from generating trace messages).
However, on our case we enable all ports, by setting the mask to 0xFFFFFFFF.
Finally, we need to enable STM timestamps. The STM timestamps shall be derived directly from the
global time stamp counter (i.e. SysClk), without any clock pre-scaling.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

24 of 33 Application Note

www.isystem.com

7 winIDEA Profiler Configuration & Visualization

As mentioned earlier, the Profiler needs to be able to interpret and visualize the recorded STM trace
data in a correct and user-friendly way.
In terms of interpretation, this means, that the profiler needs to understand the allocation of the
STM channels to specific event types, e.g. a specific STM channel is used for function profiling of a
specific bootloader. In addition, the profiler needs to be able to map the function IDs to user-
understandable function names. Finally, these function names need to appear in the Profiler
Timeline view.

7.1 Function Profiling by means of Data Profiling

The most basic approach for function profiling is provided via data profiling.
In this case, the basic data profiling is extended for function profiling by instructing the profiler to
interpret any recorded data value X which is not equal to 0, as an entry into a function X and to
interpret a data value equal to 0 as an exit from a function.

For data profiling by means of STM trace, we first need to create a Profiler Data Area for each used
STM Channel.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

25 of 33 Application Note

www.isystem.com

Figure 19: Overall Profiler Configuration for STM Data Profiling

In the sample profiler data area configuration shown in Figure 20, the data area is used to profile
functions of the R7 IPL, using STM channel 5.
The Interpretation option “Function entry/exit ident by Zero” instructs the profiler to interpret trace
data values equal to 0 as function exits.
The C header file selected as “#define file”, includes the ID-to-Function name mapping. The IDs are
the STM data values signaled when entering the functions (see also Listing 7).

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

26 of 33 Application Note

www.isystem.com

Figure 20: Sample Profiler Data Area Settings for Function Profiling (R7 IPL Functions using STM Channel 5)

#ifndef __ISYSTEM_STM_IDS_H__

#define __ISYSTEM_STM_IDS_H__

#define STM_IPL_LOADER 0x0001

#define STM_IPL_HW_INIT 0x0010

#define STM_IPL_DRAM_INIT 0x0012

#define STM_IPL_TCM_LOADER 0x0020

#define STM_IPL_INIT_RPC 0x0030

#define STM_IPL_INIT_DMA 0x0040

#define STM_IPL_LOAD_R7_RTOS 0x0050

#define STM_IPL_LOAD_A5x_BL2 0x0060

#define STM_POWERUP_A5x 0x0070

#endif /* __ISYSTEM_STM_IDS_H__ */

Listing 7: Sample Data Profiler “#define file” for R7 IPL Function Profiling

In addition, the Data Profiler may be configured to strip-off certain prefixes of the function names
when displaying the functions in the Profiler views. For instance, the prefix “STM_” can be omitted,
so that the function name is displayed as, e.g. “IPL_LOADER” instead of “STM_IPL_LOADER”. Some
specific prefixes may be needed to have unique macro names for the code instrumentation.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

27 of 33 Application Note

www.isystem.com

7.2 Function Profiling by means of OS Profiling

The more advanced concept for function profiling utilizes the OS profiling capabilities of winIDEA.
The advantage of this approach is that it is not limited to just functions, but can be extended to also
cover other types of events or objects such as OS task switches, user-specific data objects, etc... The
awareness of the Profiler for all such events and objects is achieved by means of an iSYSTEM-
proprietary XML file which is included into the winIDEA workspace.
Typically, such a Profiler XML file is used to describe the structure of an operating system, such as an
AUTOSAR OS (i.e. the so-called OS Awareness). However, by means of this XML scheme is, the
AUTOSAR-awareness can also extend to not only cover the OS but also other objects such as
AUTOSAR RTE Runnables. This mix of OS and Runnable awareness can be utilized for our use-case of
SoC boot-up profiling, meaning, the instrumented functions of the bootloaders can be treated as
Runnables and the start-up of an operating system, e.g. an AUTOSAR Classic OS or a Linux kernel of
an AUTOSAR Adaptive stack, can be handled by the OS awareness that come with the OS profiling
approach.

7.2.1 winIDEA OS Awareness

In order to enable the OS awareness via a Profiler XML file in winIDEA, you have to add a new OS
awareness file via the menu “Debug – Operating System”. Then you add a new OS and select the OS
type “OSEK AUTOSAR”.

Figure 21: winIDEA Profiler Configuration via “OSEK AUTOSAR” Awareness

Optionally, you can give this OS awareness an arbitrary name, e.g. “STM_BOOTUP”.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

28 of 33 Application Note

www.isystem.com

Figure 22: “OSEK AUTOSAR” awareness used for STM_BOOTUP profiling

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

29 of 33 Application Note

www.isystem.com

Finally, you have to select the corresponding iSYSTEM XML file, as shown in Figure 23.

Figure 23: Selection of the iSYSTEM Profiler XML File

The winIDEA Profiler needs to be configured for OS profiling as shown in Figure 24.

Figure 24: OS Profiler Configuration for Boot-Up Profiling using the iSYSTEM XML file.

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

30 of 33 Application Note

www.isystem.com

7.2.2 iSYSTEM Profiler XML File

Listing 8 shows a sample iSYSTEM XML file. It contains all information relevant for the profiler to
visualize the boot-up process as signaled by the STM trace instrumentation within the bootloaders.

<?xml version='1.0' encoding='UTF-8' ?>

<OperatingSystem>

 <Name>RCARH3_Boot</Name>

 <NumCores>6</NumCores>

 <Types>

 <TypeEnum><Name>TypeEnum_R7_IPL</Name>

 <Enum><Name>IPL_LOADER</Name><Value>0x01</Value></Enum>

 <Enum><Name>IPL_HW_INIT</Name><Value>0x10</Value></Enum>

 <Enum><Name>IPL_DRAM_INIT</Name><Value>0x12</Value></Enum>

 <Enum><Name>IPL_TCM_LOADER</Name><Value>0x20</Value></Enum>

 <Enum><Name>IPL_INIT_RPC</Name><Value>0x30</Value></Enum>

 <Enum><Name>IPL_INIT_DMA</Name><Value>0x40</Value></Enum>

 <Enum><Name>IPL_LOAD_R7_RTOS</Name><Value>0x50</Value></Enum>

 <Enum><Name>IPL_LOAD_A5x_BL2</Name><Value>0x60</Value></Enum>

 <Enum><Name>IPL_POWERUP_A5x</Name><Value>0x70</Value></Enum>

 </TypeEnum>

 <TypeEnum><Name>TypeEnum_A53_0_BL2_TYPE</Name>

 <Enum><Name>BL2</Name><Value>0x70</Value></Enum>

 </TypeEnum>

 <TypeEnum><Name>TypeEnum_UBOOT_RUN_TYPE</Name>

 <Enum><Name>UBOOT</Name><Value>0x60</Value></Enum>

 </TypeEnum>

 <TypeEnum>

 <Name>TypeEnum_R7_TaskMapping</Name>

 <Enum><Name>NoTask</Name><Value>0</Value></Enum>

 <Enum><Name>Task_A</Name><Value>1</Value></Enum>

 <Enum><Name>Task_B</Name><Value>2</Value></Enum>

 <Enum><Name>Task_IDLE</Name><Value>0xFF</Value></Enum>

 </TypeEnum>

 </Types>

 <Profiler>

 <Object>

 <Definition>R7_IPL</Definition>

 <Description>R7: IPL</Description>

 <Name>R7_IPL</Name>

 <Signaling>STM(0x00000005)</Signaling>

 <Level>Runnable</Level>

 <Type>TypeEnum_R7_IPL</Type>

 <Properties>

 <Runnable_MaskID>0xffffffff</Runnable_MaskID>

 <RunnableExitValue>0</RunnableExitValue>

 </Properties>

 </Object>

 <Object>

 <Definition>A53_0_BL2</Definition>

 <Description>A53_0: BL2</Description>

 <Name>A53_0_BL2</Name>

 <Level>Runnable</Level>

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

31 of 33 Application Note

www.isystem.com

 <Signaling>STM(0x00000007)</Signaling>

 <Type>TypeEnum_A53_0_BL2_TYPE</Type>

 <Properties>

 <Runnable_MaskID>0xffffffff</Runnable_MaskID>

 <RunnableExitValue>0</RunnableExitValue>

 </Properties>

 </Object>

 <Object>

 <Definition>UBOOT</Definition>

 <Description>A53_0: UBOOT</Description>

 <Name>UBOOT</Name>

 <Level>Runnable</Level>

 <Signaling>STM(0x00000006)</Signaling>

 <Type>TypeEnum_UBOOT_RUN_TYPE</Type>

 <Properties>

 <Runnable_MaskID>0xffffffff</Runnable_MaskID>

 <RunnableExitValue>0</RunnableExitValue>

 </Properties>

 </Object>

 <Object>

 <Definition>AUTOSAR_TASK</Definition>

 <Description>R7: Tasks</Description>

 <Name>AUTOSAR_TASK</Name>

 <Type>TypeEnum_R7_TaskMapping</Type>

 <Expression>osRunningTask</Expression>

 <DefaultValue>Task_IDLE</DefaultValue>

 <Level>Task</Level>

 <Core>0</Core>

 </Object>

 </Profiler>

</OperatingSystem>

Listing 8: Sample Profiler XML File

The “OperatingSystem” root element of the XML file consists of four nodes, i.e. “Name”,
“NumCores”, “Types” and “Profiler”.
The sub-node “Objects” of the “Profiler” node describes the objects which will be visible in the
winIDEA Profiler, e.g. “R7 IPL:” (see also Figure 25). This object description comprises the name of the
object, the method for tracing this object (e.g. via STM channel 5) and a link to an enumeration type
of the “Types” node.
The sub-nodes “TypeEnum” define enumeration types which map integer numbers received via STM
trace to meaningful strings. These stings are displayed in the profiler as areas of that profiler object
(e.g. the “IPL_TCM_LOADER” area of the “R7: IPL:” object).

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

32 of 33 Application Note

www.isystem.com

7.3 Visualization

Figure 25 shows a sample winIDEA Function Profiler Timeline, generated by means of STM trace and
Function Profiling via OS Profiling as described in 7.2 “Function Profiling by means of OS Profiling”.
The profiling includes the R7 IPL, A5x bootloaders BL2 and U-Boot as well as the AUTOSAR Classic OS
tasks running on the R7 core.

Figure 25: Sample winIDEA Profiler Timeline of an R-Car Boot-up Sequence

Boot-Up Profiling using the ARM System Trace Macrocell (STM) on a Renesas R-Car Gen3 SoC

33 of 33 Application Note

www.isystem.com

8 Technical support

8.1 Online resources

Online Help

winIDEA and testIDEA

online help

Knowledge Base

Tips & tricks categorized by
issue type and architecture

Tutorials

From a beginner to an
expert

Technical Notes

How-tos for winIDEA

functionalities with scripts

Application Notes

How-to notes on advanced

use-cases

Webinars

Technical webinars about

ISYSTEM tools with use cases

8.2 Contact

Please visit https://www.isystem.com/contact.html for contact details.

iSYSTEM has made every effort to ensure the accuracy and reliability of the information provided in
this document at the time of publishing. Whilst iSYSTEM reserves the right to make changes to its
products and/or the specifications detailed herein, it does not make any representations or
commitments to update this document.

© iSYSTEM. All rights reserved.

https://www.isystem.com/downloads/winIDEA/help/index.html
https://support.isystem.com/kb
https://www.isystem.com/support/tutorials.html
https://www.isystem.com/support/technical-notes.html
https://www.isystem.com/support/application-notes.html
https://www.isystem.com/support/meet-us.html
https://www.isystem.com/contact.html

